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Abstract 

 

Dimensionality Reduction Methods for 

Spatiotemporal Magnetic Resonance Imaging  

 

 

Jae Eun Song 

Dept. of Electrical and Electronic Engineering 

The Graduate School 

Yonsei University 

 

Magnetic resonance imaging (MRI) is a multidisciplinary imaging modality which offers 

soft tissue contrast without ionization and invasive procedures. Its flexibility allows many 

applications including multi-contrast image, metabolic activities in tissues, functional 

activities in the brain, and electromagnetic properties. 

Spatiotemporal MRI dataset provides temporal information as well as spatial 

information. Several MRI datasets have redundant temporal features such as free induction 

decay (FID), T2* relaxation, and T1 relaxation, which can be represented through low 

dimensional subspaces. The dataset reconstructed by using subspaces has a lower 

dimension than the original dataset, which is called intrinsic dimensionality. 
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In this dissertation, I propose dimensionality reduction methods for high dimensional 

MRI, specifically spatiotemporal MRI including magnetic resonance spectroscopic 

imaging (MRSI) and multi-echo gradient echo (mGRE) imaging. As a linear approach, the 

consistency of spectral basis of dynamic hyperpolarized 13C MRSI is investigated using 

principal component analysis (PCA). The spectral basis feature allows for increased SNR 

as well as reduced scan time not. Another linear approach, robust principal component 

analysis (rPCA) is implemented to mGRE imaging dataset for myelin water fraction (MWF) 

mapping. The extracted temporal basis is well corresponded to the temporal evolution of 

mGRE sources. The separation of sparse feature allows robustness to noise and artifacts, 

leading to improvements of MWF. As a nonlinear approach, robust deep autoencoder 

(rDAE) is implemented to mGRE imaging dataset for MWF mapping. The robustness to 

noise and artifact maintained and the complex-valued feature is extracted from mGRE 

sources as well. 

 

Keywords: magnetic resonance imaging, dimensionality reduction, principal 

component analysis, autoencoder, machine learning,  
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Chapter 1 

Introduction 

Magnetic resonance imaging (MRI) is an elaborate imaging modality that provides 

versatile contrasts of tissues without ionization and invasive procedure. The application of 

MRI is not limited to providing anatomical structure but varies including metabolic 

imaging, microstructure imaging, and blood flow assessment. 

The MR dataset is acquired using sequences tailored to each application, and the 

acquired dataset is composed of various dimensions including spatial, temporal, and 

spectral. Among numerous sequences, magnetic resonance spectroscopic imaging (MRSI) 

and multi-echo gradient-echo (mGRE) imaging provide temporal features of free induction 

decay (FID) and T2* relaxation, respectively. For MRSI, the spectral distribution is 

investigated by Fourier Transform of the FID in each spatial voxel and is assessed for 

quantitative estimates of the metabolites. For mGRE, the T2* decaying at each spatial voxel 

is investigated by curve-fitting and is assessed for myelin water imaging and R2* mapping. 

The high dimensional spatiotemporal dataset possesses redundant features (e.g., FID of 

MRSI and T2* decay of mGRE), which can be extracted through dimensionality reduction. 

Dimensionality reduction techniques are largely divided into linear and non-linear 

approaches according to the projection relationship between the original dataset and the 

subspace. Principal component analysis (PCA), the most representative linear 
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dimensionality reduction technique, performs dimensionality reduction by projecting the 

data into a linear subspace of lower dimensionality. Robust principal component analysis 

(rPCA), which is similar to PCA, outperforms PCA for the corrupted dataset by separating 

anomaly features into a sparse component. Autoencoder, the most representative non-linear 

dimensionality reduction technique, captures the non-linear low dimensional feature at the 

bottleneck layer by allowing nonlinearity using non-linear activation function. 

Consequently, the dataset reconstructed by using subspaces has a lower dimension than the 

original dataset, which is called intrinsic dimensionality. 

This dissertation aims to develop dimensionality reduction techniques for spatiotemporal 

MRI, specifically for MRSI and mGRE dataset. In Chapter 3, I propose a subspace 

approach for dynamic hyperpolarized 13C MRSI. In Chapter 4, I propose a multi low 

dimensional rPCA for myelin water fraction (MWF) mapping using mGRE imaging. In 

Chapter 5, I propose a multi low dimensional autoencoder for MWF mapping using mGRE 

imaging. 

1.1 Outline 

Chapter 2: Background provides fundamentals of MRI, and dimensionality reduction 

techniques. I start with the fundamentals of MRI which offers MR physics for acquisition 

and reconstruction including magnetization, excitation, relaxation, and pulse sequence. 

Then, I describe essential dimensionality reduction techniques including principal 

component analysis (PCA), non-negative matrix factorization (NMF), robust principal 
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component analysis (rPCA), and robust deep autoencoder (rDAE). 

Chapter 3: Dynamic Hyperpolarized 13C MRSI using SPICE (SPectroscopic 

Imaging by exploiting spatiospectral CorrElation) in Mouse Kidney at 9.4 T deals with 

the subspace‐based spectroscopic imaging for dynamic 13C MRSI. In previous studies, the 

original SPICE technique was developed for 1H MRSI and the feasibility of SPICE for 

13C MRSI was demonstrated. Furthermore, the consistency of principal components 

(referred here as a spectral basis) according to dynamic frames is validated by estimating 

cosine similarity. With the feasibility of a single-framed principal component, dynamic 13C 

MRSI is acquired and reconstructed. It is tested and analyzed in the simulations, enzyme 

phantom, and in-vivo experiments. 

Chapter 4: Blind Source Separation for Myelin Water Fraction Mapping using 

Multi-echo Gradient-echo Imaging deals with the separation of source signals of mGRE 

by encouraging data-driven properties of low-rankness and sparsity. In the original rPCA 

algorithm, a single low-rank component was separated by using nuclear norm minimization. 

Furthermore, based on the data-driven properties mGRE dataset, rPCA algorithm is 

incorporated with incorporating hankelization and nonnegative matrix factorization. It is 

demonstrated that the proposed method improves the estimation of MWF. It is tested and 

analyzed in the simulations, and in-vivo experiments including healthy volunteers and 

patients.  

Chapter 5: Robust Deep Autoencoder for mGRE Source Separation deals with the 



 

4 

 

separation of source signals of mGRE by encouraging data-driven properties of low-

dimensionality and sparsity. In the original rDAE algorithm, a single low-dimensional 

component was separated by using deep autoencoder. Furthermore, based on the data-

driven properties mGRE dataset, rDAE algorithm is incorporated with model-based single 

source estimation. It is demonstrated that the proposed method improves the estimation of 

MWF. It is tested and analyzed in the simulations, and in-vivo experiments including 

healthy volunteers and patients. 

Chapter 6: Conclusion summarizes the improvements of spatiotemporal MRI 

reconstruction from data-driven dimensionality reduction techniques. 
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Chapter 2 

Background 

 

2.1 Fundamentals of Magnetic Resonance Imaging 

In this chapter, I give fundamentals of MRI from magnetic resonance phenomena to data 

acquisition. I start with the magnetization and precession. Then, I describe excitation and 

relaxation. Lastly, I describe the elements of the pulse sequence and introduce two pulse 

sequences used in the following chapters. 

 

2.1.1 Magnetization and Precession 

Nuclei with odd numbers of protons and/or neutrons formulate spin angular momentum 

(e.g., 1H, 13C, etc), resulting in magnetic dipole moment. When there is no external 

magnetic field, magnetic dipole moments are randomly aligned. When the external 

magnetic field 𝑩 is introduced, the magnetic dipole moments align with the direction of 

the external magnetic field 𝑩, and the net magnetization 𝑴 is formed.  

In classical physics, the behavior of net magnetization along the external magnetic field 

is described as follows: 
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𝑑𝑴

𝑑𝑡
= 𝑴×  𝛾𝑩                         (2.1) 

where γ is the gyromagnetic ratio which is unique to nuclei (e.g., 42.576 and 10.705 

MHz/T for 1H and 13C, respectively). Equation (2.1) represents the precession of 

magnetization along the external magnetic field. The direction of the main magnetic field, 

𝑩𝟎, is commonly selected by the z-axis, which is referred to as a longitudinal axis. The net 

magnetization precesses along the main magnetic field with a specific angular frequency 

as follows: 

 𝜔0 = γ𝐵0                           (2.2) 

where 𝜔0 is called resonance frequency, or Larmor frequency which is determined by 

gyromagnetic ratio and the strength of the main magnetic field. 

 

2.1.2 Excitation and Relaxation 

To tip the magnetization from the equilibrium state, an additional magnetic field with 

resonance frequency should be introduced. It is referred to as radiofrequency (RF) field, 

𝑩𝟏. The direction of RF field is commonly selected by xy-plane, which is referred to as a 

transverse plane. The magnetization resonates with RF field and results in excitation.  

Following the excitation, the magnetization returns to the equilibrium state, which is 

called relaxation [1, 2]. It is described in T1 relaxation and T2 relaxation. T1 relaxation, 

𝑀𝑧 , refers to the recovery of the longitudinal magnetization which originates from the 
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energy exchange between spins and neighboring nuclei. T2 relaxation, 𝑀𝑥𝑦, refers to the 

decay of the transverse magnetization which originates from the dephasing of spins. The 

behavior of each magnetization is described as follows: 

 
𝑑𝑀𝑧

𝑑𝑡
= −

𝑀𝑧−𝑀0

𝑇1
                          (2.3) 

𝑑𝑀𝑥𝑦

𝑑𝑡
= −

𝑀0

𝑇2
                           (2.4) 

where M0 is the initial magnetization at equilibrium, T1 is the longitudinal relaxation 

time constant, and T2 is the transverse relaxation time constant 

Combining the precession and relaxation behavior, the classical physics of the 

magnetization is described by the Bloch equation as follows [3]: 

𝑑𝑀⃗⃗ 

𝑑𝑡
= 𝑀⃗⃗ × 𝛾𝐵⃗ −

𝑀𝑥𝑥+𝑀𝑦𝑦̂

𝑇2
−
(𝑀𝑧−𝑀0)𝑧̂

𝑇1
                (2.5) 

where 𝑥, 𝑦̂, and 𝑧̂ are the unit vectors for x, y, z-axis, respectively. 

 

2.1.3 Pulse sequence 

The pulse sequence is a combination of RF pulses, gradient waveforms, and analog-to-

digital converter (ADC). The MR image contrasts are varied according to the arrangement 

of these elements.  

The simple MGRE sequence is depicted in Figure 2.1a. The sequence begins with an RF 
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pulse with a slice selection gradient that selects a specific slice of the subject along the z-

axis. The phase encoding gradient is then applied according to the spatial information such 

as FOV and resolution. Lastly, the readout gradient is applied, and the echo signal is 

acquired in Fourier domain using ADC. As a multi echo signal is acquired, the T2* contrast 

of each temporal dimension is represented. 

 The two spatial dimensional MRSI sequence is depicted in Figure 2.1b. Here, the 

readout gradient in MGRE is adapted to the other phase encoding gradient. The echo signal 

is acquired for each phase encoding step, without readout gradient. The free induction 

decay is acquired for each spatial voxel, representing the spectral distribution. 

Figure 2.1. The timing diagram of pulse sequences used in the following chapters. (a) 

MGRE in chapters 4 and 5. (b) MRSI in chapter 3. 

 

2.2 Dimensionality Reduction Techniques 

In this chapter, I give a brief introduction of dimensionality reduction techniques which 
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are covered in the following chapters. As a linear technique, PCA and rPCA are presented. 

As a non-linear technique, DAE and rDAE are presented. 

 

2.2.1 Principal Component Analysis 

PCA is a representative linear dimensionality reduction technique. It reduces the 

dimensionality of data by embedding the original data matrix into a linear subspace of 

lower dimensionality. Statistically, it extracts a low-dimensional representation of the data 

that describes as much of the variance in the data as possible [4-7]. 

Before looking into PCA mathematically, brief linear algebra is presented [8]. For 

𝑚 × 𝑛 asymmetry matrix 𝑴, simple eigenvalue and eigenvector problem fail. More than 

that, two sets of singular vectors 𝒖’s and 𝒗’s are needed. For singular vectors, each 𝑴𝒗 

equals 𝜎𝒖 as: 

𝑴𝒗1 = 𝜎1𝒖1, … ,𝑴𝒗𝑟 = 𝜎𝑟𝒖𝑟,      𝑴𝒗𝑟+1 = 0,… ,𝑴𝒗𝑛 = 0        (2.6) 

where 𝑟  is the rank of 𝑨 , the number of independent columns, and rows. 𝜎𝑘  are 

singular values in descending order 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑟 > 0. The number 𝑟 indicates the 

dimension of the column space and the row space. Equation (2.6) can be written in matrix 

form as: 

𝑴𝑽 = 𝑼𝚺,    𝑴[𝒗1…𝒗𝑟…𝒗𝑛] = [𝒖1…𝒖𝑟…𝒖𝑛] [

𝜎1
…𝜎𝑟

0

]        (2.7) 
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where 𝑽 and 𝑼 are square matrices of size 𝑛 × 𝑛 and 𝑚 ×𝑚 respectively. As the 

columns of 𝒗𝑘’s and 𝒖𝑘’s are orthogonal unit vectors, 𝑽𝑇 = 𝑽−1 and 𝑼𝑇 = 𝑼−1 are 

satisfied. It allows us to rearrange Equation (2.7) to usual singular value decomposition 

(SVD) form as (Figure 2.2): 

𝑴 = 𝑼𝚺𝑽𝑇 = ∑ 𝜎𝑘𝒖𝑘𝒗𝑘
𝑇𝑚𝑖𝑛 {𝑚,𝑛}

𝑘=1                    (2.8) 

PCA is based on rank- 𝑟 approximation for matrix 𝑴. The principal components of 

matrix 𝑴 are extracted by solving matrix optimization problem as: 

𝑴̂ = 𝑼̂𝚺̂𝑽̂𝑇 =∑𝜎𝑘𝒖𝑘𝒗𝑘
𝑇

𝑟

𝑘=1

 

𝑠. 𝑡.  ‖𝑴−𝑴‖𝐹 ≥ √∑ 𝜎𝑘
min {𝑚,𝑛}
𝑘=𝑟+1                     (2.9) 

where 𝐹  indicates the Frobenius norm. By thresholding largest 𝜎𝑘 ’s, dominant 

subspaces are extracted. 

 

2.2.2 Robust Principal Component Analysis 

rPCA is an algorithm that recovers a low-rank matrix, 𝑳, and a sparse matrix, 𝑺, from 

the data matrix, 𝑴 . The arbitrary corruptions do not exhibit low-dimensionality, and 

consequently, these features are extracted to a sparse matrix by ℓ1-norm constraint. The 

matrix minimization problem is as [9, 10]: 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒   ‖𝑳‖∗ + ρ‖𝑺‖1         

𝑠. 𝑡.  𝑳 + 𝑺 = 𝑴                         (2.10) 

where ‖∙‖∗ denotes the nuclear norm, ‖∙‖1  denotes the ℓ1 -norm, 𝜌  denotes 

regularization parameters for sparsity. Recent advances in the proximal algorithm for 

convex optimization, alternating direction method of multipliers (ADMM), allow Equation 

(2.10) to be optimized separately for each variable with fast convergence [11]. This 

algorithm will be illustrated in detail in Chapter 4.3. 

 

2.2.3 Autoencoder 

Autoencoder is feed-forward neural networks with an odd number of hidden layers and 

shared weights between the top and bottom layers. It has been developed to learn the 

underlying representation of data of various attributes. It has been trained to learn low-

dimensional features while minimizing the error between input data and output data [12].  

A basic three-layer autoencoder with input 𝒙 and hidden feature 𝒉 can be expressed 

as: 

𝒉 = 𝑓ℰ(𝒙) = 𝑔1(𝑾1𝒙 + 𝒃1)                      (2.11a) 

𝒙̂ = 𝑓𝒟(𝒉) = 𝑔2(𝑾𝟐𝒉+ 𝒃2)                     (2.11b) 

where 𝑓ℰ  and 𝑓𝒟  are encoder and decoder functions respectively. 𝑾1  and 𝑾2  are 
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weight matrix with the size of 𝑟 × 𝑛 and 𝑛 × 𝑟 respectively. 𝒃1 and 𝒃2 are bias vector 

with the size of 𝑟 × 1 and 𝑛 × 1 respectively. 𝑔’s are element-wise nonlinear activation 

functions. The dimensionality of input 𝒙  is reduced from 𝑛  into 𝑟 , and the low-

dimensional features are represented in the bottleneck 𝒉. The layer parameters for 𝑾1, 

𝑾2, 𝒃1, 𝒃2 are estimated while training autoencoder to reduce the root mean squared 

error between input 𝒙 and output 𝒙̂ as: 

argmin
𝑾1,𝑾2,𝒃1,𝒃2 

1

𝑁
∑ ‖𝒙𝑘 − 𝑓𝒟(𝑓ℰ(𝒙𝑘))‖2

2𝑁
𝑘=1                  (2.12) 

Deep autoencoder (DAE) is constructed by stacking multiple encoding and decoding 

layers (Figure 2.3). The encoder and decoder functions are represented as: 

𝒉 = 𝑓ℰ(𝒙) = 𝑔𝐿(𝑾𝐿…𝑔2(𝑾2(𝑔1(𝑾1𝒙 + 𝒃1)) + 𝒃2)…𝒃𝐿)      (2.13a) 

𝒙̂ = 𝑓𝒟(𝒉) = 𝑔2𝐿−1(𝑾2𝐿−1…𝑔𝐿+2(𝑾𝐿+2(𝑔𝐿+1(𝑾𝐿+1𝒉+ 𝒃𝐿+1)) + 𝒃𝐿+2)…𝒃2𝐿−1) 

(2.13b)  

 

2.2.4 Robust Deep Autoencoder 

rDAE is an algorithm that recovers a non-linear low-dimensional feature, 𝑳, and a sparse 

feature, 𝑺,  from the data matrix, 𝑴 . The arbitrary corruptions do not exhibit low-

dimensionality, and consequently, these features are extracted to a sparse matrix by ℓ1-

norm constraint. The matrix minimization problem is as [13]: 
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min
θ𝒟 ,θℰ ,𝐒

 ‖𝑳 − 𝒟θ𝒟 (ℰθℰ(𝑳))‖2
+ ρ‖𝐒‖1 

s. t.  𝑴 − 𝑳 − 𝑺 = 0                       (2.14) 

where ‖∙‖∗ denotes the nuclear norm, ‖∙‖1  denotes the ℓ1 -norm, 𝜌  denotes 

regularization parameters for sparsity. As Equation (2.14) is non-differentiable, the idea of 

an ADMM and Dykstra’s alternating projection method are combined [11, 14]. This 

algorithm will be illustrated in detail in Chapter 5.3. 

Figure 2.2. Schematic diagram of singular value decomposition (SVD) for 𝑚 > 𝑛.  

 

Figure 2.3. Schematic diagram of deep autoencoder (DAE).  
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Chapter 3 

Dynamic Hyperpolarized 13C MRSI using 

SPICE in Mouse Kidney at 9.4T 

 

3.1 Motivation 

The development of hyperpolarized 13C MRSI via dissolution dynamic nuclear 

polarization (DNP) has enabled the in-vivo observation of pyruvate and its products (e.g., 

lactate and alanine) [15]. Hyperpolarized 13C spectra obtained from the kidney, liver, and 

prostate have been examined, and the lactate/pyruvate ratio exhibited elevated levels in 

tumor regions [16, 17]. Through observation of these spectra over time, the change in the 

metabolic state has also been demonstrated in normally fed and fasted animals [18]. 

Following these studies, there have been many studies on dynamic hyperpolarized 13C 

MRSI in clinical applications including tumor investigations [19-23] and diabetes [24, 25]. 

However, signal levels have been a concern owing to the limited lifetimes of the 

hyperpolarized signals, which disappear according to their T1 relaxation times, thus making 

it difficult to acquire reliable high-spatial-resolution dynamic hyperpolarized 13C MRSI 

[26]. 
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To overcome this limitation, fast imaging techniques such as echo-planar spectroscopic 

imaging (EPSI) [20], spiral CSI [27], compressed sensing [28-30], and IDEAL spiral CSI 

[31] have been investigated. These techniques help improve spatial and temporal 

resolutions in dynamic hyperpolarized 13C MRSI. By contrast, as an alternative to MRSI, 

spectral-spatial (SPSP) excitation radio frequency (RF) pulses have been applied to 

dynamic hyperpolarized 13C imaging [32-36]. They use spectral selective excitation by 

exploiting a priori knowledge of the frequency distribution to acquire high-spatial-

resolution hyperpolarized 13C images [32, 33].  

Recently, the SPectroscopic Imaging by exploiting spatiospectral CorrElation (SPICE) 

technique has been developed to accelerate 1H MRSI [37, 38], and it has also been applied 

to various nuclei (e.g., 13C MRSI for single slice [39] and 31P MRSI for dynamic 

imaging[40]). In 1H MRSI, SPICE demonstrated hybrid acquisition employing CSI and 

EPSI segments: 1. The CSI segment acquires the ‘training dataset’ (D1) with high spectral 

resolution and relatively high signal-to-noise ratio (SNR). 2. The EPSI segment acquires 

the ‘imaging dataset’ (D2) sparsely in the spectral domain with high spatial resolution. By 

using the partial separability (PS) of spectroscopic signals [41, 42], subspace structures of 

the spectroscopic signals are exploited from the D1 dataset to generate the spectral basis 

functions. Afterward, high spatial resolution images are reconstructed by solving a 

regularized linear least-squares problem to obtain the full spectroscopic imaging dataset 

[43-45]. The feasibility of the SPICE technique for hyperpolarized 13C MRSI has been 

investigated and applied to the imaging of pyruvate and lactate from mouse kidney [39]. 



 

16 

 

In this study, I present a new dynamic hyperpolarized 13C MRSI method using the SPICE 

technique. The original acquisition scheme of SPICE has been modified to the proposed 

method. The subspace structure exploited from the single D1 dataset is applied to 

subsequent D2 datasets to reconstruct dynamic hyperpolarized 13C spectroscopic images. 

The feasibility of using a single D1 dataset has been investigated in two parts: (1) 

consistency of spectral basis and (2) accuracy of estimated 𝑘𝑝𝑙 (conversion constant rate 

from pyruvate to lactate) with regard to the dynamic frame at which the D1 dataset is 

acquired. The proposed acquisition scheme is implemented in an enzyme phantom 

experiment. Finally, dynamic 13C MRSI is obtained from normal diet and high-fat diet mice 

using the proposed acquisition scheme. 

 

3.2 Methods 

3.2.1 Partially separable function for dynamic MRSI 

A high dimensional dynamic spectroscopic signal can be represented as a partially 

separable function [42] as follows: 

𝜌(𝑟, 𝑓, 𝑡)  =  ∑ 𝑐𝑙(𝑟, 𝑡)𝜑𝑙(𝑓, 𝑡)
𝐿
𝑙=1                     (3.1) 

where 𝐿 is the model order determined by the singular values of the D1 dataset, 𝑙 is 

the index of the spectral basis, and 𝜑𝑙(𝑓, 𝑡) is the spectral basis function at dynamic frame 

t. The spatial coefficient 𝑐𝑙(𝒓, 𝑡) is the corresponding spatial coefficient for 𝜑𝑙(𝑓, 𝑡) at 
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dynamic frame t and includes the effect of metabolism, perfusion, and T1 relaxation [46]. 

The spatial coefficient 𝑐𝑙(𝒓, 𝑡) varies for each dynamic frame t. The spectral basis function 

s determined according to the intrinsic characteristics of metabolites such as chemical shift 

(∆𝑓). Although the time varying basis function 𝜑𝑙(𝑓, 𝑡) should be determined for each 

dynamic frame t, it leads to impractical implementation circumstances in hyperpolarized 

13C situation that require scans within a finite time. Here, the time varying basis function is 

assumed to be consistent over the dynamic frames (i.e., 𝜑𝑙(𝑓, 𝑡) ≈ 𝜑𝑙(𝑓)). Based on this 

assumption, I propose a data acquisition scheme comprising a single D1 dataset that 

captures the 𝜑𝑙(𝑓)  information and several D2 datasets that capture the 𝑐𝑙(𝒓, 𝑡) 

information in each dynamic frame. To investigate the feasibility of this assumption, the 

consistency of the spectral basis function and the accuracy of the estimated 𝑘𝑝𝑙  were 

evaluated with respect to the acquisition timing of D1 dataset, at which 𝜑𝑙(𝑓)  was 

extracted. 

 

3.2.2 Data acquisition and reconstruction for dynamic SPICE 

Figure 3.1 shows the proposed acquisition scheme composed of 1) a single D1 dataset 

using a centric ordered FIDCSI sequence and 2) several D2 datasets using a centric ordered 

EPSI sequence with bipolar readout gradient. From the two acquired datasets, high-

resolution dynamic spectroscopic images were reconstructed [42]. 

The B0 field inhomogeneity effect of each dataset was compensated by a field map 
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acquired using 1H multi-echo gradient echo sequence according to the spatial resolution of 

each dataset. The frequency shift in 1H was scaled by 𝛾13𝐶/𝛾1𝐻 to set a frequency shift in 

13C and was corrected by using the conjugate phase method [47]. 

The spectral basis function set, Φ = {𝜑𝑙(𝑓)}𝑙=1
𝐿  , was extracted from the D1 dataset 

through singular value decomposition (SVD). The left singular vector was selected from 

the SVD of the D1 dataset as the spectral basis. The model order, L, was set to a singular 

number within which 95% power was maintained [42]. Consequently, the spatial 

coefficients at each dynamic frame, 𝐶𝑡 = {𝑐𝑙(𝒓, 𝑡)}𝑙=1
𝐿 , were estimated from the D2 dataset 

by solving the following minimization problem for each dynamic frame: 

min
𝐶𝑡

1

2
‖𝑑2,𝑡 − Ω𝐹(Φ𝐶𝑡)‖2

2
 +  𝜆 ∑ ‖𝑅𝑟(𝐶𝑡)‖∗𝑟              (3.2) 

where t is the dynamic frame, 𝑑2,𝑡 is the D2 dataset at each dynamic frame, Ω is the 

sampling operator in spectral dimension to fit the spectral bandwidth of the D1 and D2 

datasets, 𝐹 is the Fourier transform in the spatial domain, 𝜆 is the regularization constant, 

𝑅𝑟 is a locally low-rank (LLR) regularization function, which encourages the low rankness 

of the local regions [48], and ‖∙‖∗ represents the nuclear norm [49]. Equation (3.2) was 

solved by the alternating direction method of multipliers (ADMM) algorithm [11]. Notably, 

the matrix size of Φ  and 𝐶𝑡  was 𝑁𝑓 × 𝐿  (𝑁𝑓  : spectral size of D1) and 𝐿 × 𝑁𝑝𝑖𝑥𝑒𝑙 

(𝑁𝑝𝑖𝑥𝑒𝑙: spatial size of D2) respectively. 
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3.2.3 Kinetic modeling for dynamic hyperpolarized 13C signal 

The two-site exchange model with arterial input function (AIF) was implemented to 

simulate the dynamic evolution of the metabolites and evaluate the 𝑘𝑝𝑙 estimation as [20]: 

𝑀𝑝𝑦𝑟(𝑡) = {
 
𝑟𝑎𝑡𝑒𝑖𝑛𝑗

𝑘𝑝𝑦𝑟
(1 − 𝑒−𝑘𝑝𝑦𝑟(𝑡−𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙)),   𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 ≤ 𝑡 < 𝑡𝑒𝑛𝑑

𝑀𝑝𝑦𝑟(𝑡𝑒𝑛𝑑)𝑒
−𝑘𝑝𝑦𝑟(𝑡−𝑡𝑒𝑛𝑑),                                         𝑡 ≥ 𝑡𝑒𝑛𝑑

     (3.3a) 

𝑀𝑙𝑎𝑐(𝑡) =

{
 
 

 
 

𝑘𝑝𝑙𝑟𝑎𝑡𝑒𝑖𝑛𝑗

𝑘𝑝𝑦𝑟−𝑘𝑙𝑎𝑐
(
1−𝑒−𝑘𝑙𝑎𝑐(𝑡−𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙)

𝑘𝑙𝑎𝑐
−
1−𝑒−𝑘𝑝𝑦𝑟(𝑡−𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙)

𝑘𝑝𝑦𝑟
),    

                                                                                                    𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 ≤ 𝑡 < 𝑡𝑒𝑛𝑑
𝑀𝑝𝑦𝑟(𝑡𝑒𝑛𝑑)𝑘𝑝𝑙

𝑘𝑝𝑦𝑟−𝑘𝑙𝑎𝑐
(𝑒−𝑘𝑙𝑎𝑐(𝑡−𝑡𝑒𝑛𝑑) − 𝑒−𝑘𝑝𝑦𝑟(𝑡−𝑡𝑒𝑛𝑑)) + 𝑀𝑙𝑎𝑐(𝑡𝑒𝑛𝑑)𝑒

−𝑘𝑝𝑦𝑟(𝑡−𝑡𝑒𝑛𝑑),

                                                                                                                       𝑡 ≥ 𝑡𝑒𝑛𝑑

 

(3.3b)  

where 𝑀𝑝𝑦𝑟(t) and 𝑀𝑙𝑎𝑐(𝑡) are signal evolutions of pyruvate and lactate as a function 

of time, respectively; 𝑘𝑝𝑦𝑟 and 𝑘𝑙𝑎𝑐 are the decay rate constants owing to 𝑇1 relaxation 

and RF excitation for pyruvate and lactate, respectively (𝑠−1 ); 𝑟𝑎𝑡𝑒𝑖𝑛𝑗  is the rate of 

pyruvate arrival (𝑠−1); 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 is the time of pyruvate arrival (𝑠) and 𝑡𝑒𝑛𝑑 is the time of 

the maximum pyruvate signal (𝑠); 𝑘𝑝𝑙 is the reaction rate constant from pyruvate to lactate 

(𝑠−1). 𝑘𝑝𝑦𝑟 and 𝑘𝑙𝑎𝑐 were estimated as 𝑒−𝑇𝑅/𝑇1 · cos (FA). 

Before fitting dynamic curves of dynamic SPICE, several parameters were pre-

determined and assumed. First, 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙, 𝑡𝑒𝑛𝑑, and 𝑟𝑎𝑡𝑒𝑖𝑛𝑗 were estimated by fitting the 

dynamic signal evolution acquired from pre-scan to Equation 3.3a; the resulting values 
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were 1 s, 12 s, and 0.3 𝑠−1  respectively. Second, the T1 and T2* relaxation of all 

metabolites were set to 40 s and 30 ms, respectively [50]. Third, the signal evolution of 

alanine and pyruvate-hydrate was generated by an amount of 1/5 of lactate and 1/10 of 

pyruvate, respectively, to imitate the various substances of in vivo circumstances.  

 

3.2.4 Consistency of the spectral basis according to the dynamic 

frame 

To investigate the influence of timing at which the spectral basis is collected, the spectral 

basis was extracted from the D1 datasets at various dynamic frames from the beginning of 

lactate peak (here, index of dynamic frame was from 1 to 19). The consistency between the 

two spectral basis function was evaluated by ‘cosine similarity’, which was used as a metric 

for the similarity between two spectra [51].  

𝑆𝑙(𝑖, 𝑗) = ‖  
∑  𝜑𝑙(𝑓,𝑖)∙𝜑𝑙(𝑓,𝑗)𝑓

∑ 𝜑𝑙(𝑓,𝑖)
2

𝑓  ∑ 𝜑𝑙(𝑓,𝑗)
2

𝑓
  ‖         (𝑖, 𝑗 = 1,2,3,… ,19)        (3.4) 

where 𝑙 is an index of the spectral basis, 𝜑𝑙(𝑓, 𝑖) and 𝜑𝑙(𝑓, 𝑗) denote an 𝑙th spectral 

basis at the 𝑖th and 𝑗th dynamic frames, respectively, ‖∙‖ denotes the Euclidian norm for 

complex vector (√𝑥∗ ∙ 𝑥) [51]. Notably, the 1st dynamic frame indicates the timing at 

which the lactate signal is maximum (here, 18 s after the beginning of metabolite exchange) 

and the interval of each dynamic frame is 0.96, which is the same as that of the acquisition 

time for a single D1 dataset. Note that 𝑆𝑙 was evaluated for 𝑙 = 1,2, … , L. A value close 
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to 1 indicates high similarity (i.e., most consistent) and a value near 0 indicates low 

similarity (i.e., less consistent) between the spectral basis. 

 In the simulation, the D1 datasets were generated repeatedly during 19 dynamic frames 

considering signal decay due to T1 relaxation, RF excitation, and metabolite conversion 

rate (𝑘𝑝𝑙). A numerical vial phantom composed of 7 vials with different 𝑘𝑝𝑙 was designed 

(Figure 3.1a). The 𝑘𝑝𝑙 of each vial was set to [0.002:0.004:0.026], respectively. All the 

D1 datasets were generated assuming a spatial matrix size = 4x4 with 16 phase encodings, 

spectral size = 320 points, spectral bandwidth = 6000 Hz, FA = 10°. Gaussian noise was 

added such that the peak SNR of pyruvate was 300 in the reconstructed spectrum of the D1 

dataset at the first dynamic frame. The level of SNR was determined with reference to in-

vivo experiment. Notably, only D1 datasets were utilized to investigate the consistency of 

the spectral basis. 

In the in-vivo experiment, D1 datasets were continuously acquired from an ND mouse 

using a centric ordered FIDCSI sequence from 19 dynamic frames. The imaging parameters 

were a spatial matrix size = 4 × 4, number of phase encoding = 16, TE/TR = 3.5/60 ms, 

FOV = 35 × 35 mm2, slice thickness = 8.5 mm, FA = 10°, and spectral bandwidth = 6009.6 

Hz. The data acquisition commenced 18 s following the start of injection of 350 μL 

hyperpolarized 13C pyruvate substrate (pH = 7.2, polarization level = 15.4%, 79 mM). 
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3.2.5 Effect of transition of spectral basis on 𝒌𝒑𝒍 estimation 

To investigate the effect of transition of spectral basis on the accuracy of 𝑘𝑝𝑙 estimation, 

the spectral bases were estimated from D1 datasets in various situations. All the simulations 

were conducted in a series of Monte-Carlo simulations (300 repetitions). A numerical vial 

phantom composed of seven vials with different 𝑘𝑝𝑙 (0.002:0.004:0.026) (Figure 3.1a) 

was designed. 

First, the effect of a dynamic frame from a D1 dataset on the estimated 𝑘𝑝𝑙  was 

investigated. D1 datasets were generated similarly to those in the aforementioned 

simulation. D2 datasets were generated repeatedly in a similar way to the D1 datasets 

assuming a spatial size (𝑁𝑝𝑖𝑥𝑒𝑙) = 32 × 32, spectral size (𝑁𝑓) = 160 points, and spectral 

bandwidth = 6000 Hz (here, nine D2 datasets were generated). Gaussian noise was added 

so that the peak SNR of pyruvate was 150 in the reconstructed spectrum of the D2 dataset 

in the first dynamic frame. The SNR was determined with reference to the in-vivo 

experiment. The D1 dataset of each dynamic frame (from 1 to 19) was used to reconstruct 

the spatial coefficients from the D2 datasets. Note that a single D1 dataset and nine D2 

datasets were used to reconstruct the spectral-spatial-temporal MRSI data, which were used 

to generate a 𝑘𝑝𝑙 map. The estimated 𝑘𝑝𝑙 and the cosine similarity of spectral basis were 

evaluated at the same dynamic frame. Additionally, to investigate whether the acquisition 

of a D1 dataset during the injection (i.e., upslope) period influences 𝑘𝑝𝑙 estimation, a D1 

dataset was acquired during this period.  
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Second, the effect of spatial resolution of the D1 dataset on the estimated 𝑘𝑝𝑙  was 

investigated. In addition to vial phantom, a numerical anatomical kidney phantom was 

designed considering the hyperpolarized 13C situation in which a few of the whole FOV 

showed signal. A phantom was composed of three types of tissues with different 𝑘𝑝𝑙 

(0.018, 0.014, and 0.026 for modeling cortex, medullar, and vascular tissues, respectively). 

D1 datasets were generated similarly to those in the aforementioned simulation and only 

the spatial size (𝑁𝑝𝑖𝑥𝑒𝑙) was varied from 4 × 4 to 32 × 32. Note that the same D2 datasets 

of the aforementioned simulation were used. 

 

3.2.6 Enzyme phantom experiment 

Phantom experiments were conducted to verify the feasibility of estimating 𝑘𝑝𝑙 using 

the proposed dynamic SPICE. For this purpose, the estimated 𝑘𝑝𝑙  map from dynamic 

SPICE was compared with the 𝑘𝑝𝑙 value estimated from unlocalized spectroscopy. The 

enzyme phantom was composed of one 15 ml Falcon tube filled with five-fold concentrated 

phosphate buffered saline at 14 ml, nicotinamide adenine dinucleotide (NADH) at 4.4 mM 

(Sigma-Aldrich, Gillingham, UK), and L-Lactate Dehydrogenase (LDH) extracted from 

rabbit muscle at 120 U (Sigma-Aldrich, Gillingham, UK) [52]. 1 ml of the hyperpolarized 

13C pyruvate solution was injected through a line with an inner/outer diameter of 0.28/0.61 

mm. A T2 weighted proton image was acquired with a rapid acquisition with relaxation 

enhancement (RARE) system with a RARE factor = 4, TE/TR = 22/3000 ms, FOV = 40 × 
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40 mm2, and in-plane resolution = 0.31 × 0.31 mm2. Subsequently, hyperpolarized 13C 

MRSIs were acquired using slice-selective RF excitation pulses. 

For unlocalized spectroscopy, the signal was obtained from the FOV in dynamic SPICE 

without spatial encoding. The acquisition parameters were set as follows: spectral 

bandwidth = 6009.6 Hz, FID points = 320, scan time = 120 s, TR = 1000 ms, FOV = 40 × 

40 mm2, and flip angle = 10°. The data acquisition commenced before the injection of 1 

ml hyperpolarized 13C substrate (pH = 7.2, polarization level = 18.6%) and the lactate peak 

was represented at 24 s after injection. 

For dynamic SPICE, the imaging parameters for D1 (FIDCSI) and D2 (EPSI) were set 

as follows: 1. D1 dataset: spatial matrix size = 4 × 4, phase encoding for CSI = 16, spectral 

bandwidth = 6009.6 Hz, FID points (𝑁𝑓) = 320, and scan time = 0.96 s. 2. D2 dataset: 

spatial matrix size (𝑁𝑝𝑖𝑥𝑒𝑙) = 32 × 32, phase encoding number = 32, sampling bandwidth = 

96.15 kHz, spectral points (echo train length) = 64, and scan time = 17.28 s. D2 datasets 

were acquired for nine dynamic frames; the time interval between each dynamic frame was 

1.92 s. The total acquisition time was 18.24 s, TE/TR = 3.5/60 ms, FOV = 40 × 40 mm2, 

and flip angle = 10°. Data acquisition commenced 18 s following the start of injection of 

1 ml hyperpolarized pyruvate substrate (pH = 7.2, polarization level = 17.6%). The scan 

for dynamic SPICE started 24 s after injection based on the dynamic signal evolution in 

unlocalized spectroscopy. 
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3.2.7 Animal experiments of two groups: mice following a normal 

diet and mice following a high-fat diet 

Animal studies were conducted using two different experimental groups: ND mice (n = 

3) and HFD mice (n = 3). A high metabolic activity was expected owing to the diabetic 

condition of the HFD mice because long exposure to hyperglycemia has been regarded as 

a factor that can induce kidney disease9. These animal sets have been used for the study of 

the metabolism of the mouse brain39. All imaging parameters were the same as the enzyme 

phantom experiment described above except for FOV and slice thickness (= 8.5 mm). The 

FOV of ND mice and HFD mice was determined to cover their entire body without aliasing 

(35 × 35 mm2 and 40 × 40 mm2 for ND mice and HFD mice, respectively). In advance to 

dynamic SPICE acquisition, pre-scan was executed using unlocalized spectroscopy as 

phantom experiment and the lactate peak was represented at 18 s after injection (Figure 

3.1c). Dynamic SPICE acquisition commenced 18 s following the start of injection of 350 

μL hyperpolarized pyruvate substrate (pH = 7.2, polarization level = 16.5%, 79 mM). The 

pyruvate peak map and the lactate peak map were obtained for seven dynamic frames with 

an in-plane resolution of 1.09 × 1.09 mm2 and 1.25 × 1.25 mm2 for ND mice and HFD 

mice, respectively. The ROI was manually segmented for three types of tissues (vascular, 

medullar, and cortical tissues) based on the T2 weighted proton image. Student t-test was 

used to compare the two groups for each ROI, respectively. The mean and standard 

deviation of 𝑘𝑝𝑙 in each group were calculated. 
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Male ICR mice (30–35 g, seven weeks old) were purchased from Japan SLC, a branch 

of Charles River Laboratories (Shizuoka, Japan). Mice were fed either a ND (PicoLab, 13.1 

kcal % fat) or HFD (Research Diet INC., 60.0% kcal fat) for 12 weeks and 24 weeks. The 

body weights of the ND mice and HFD mice were 53.5 ± 3.41 g and 78.58 ± 4.34 g, 

respectively. The fasting blood glucose (FBG) levels of ND and HFD were measured as 

141.5 ± 5.91 mg/dL and 285.6 ± 38.02 mg/dL respectively. All animal procedures were 

approved by the Institutional Animal Care and Use Committee of Yonsei University 

College of Medicine (IACUC No.2015-0039). All experiments were conducted in 

accordance with the relevant guidelines and regulations. 

 

3.2.8 Hardware and Polarization Procedure 

Phantom and in-vivo experiments were conducted on a 9.4 T Bruker BioSpec 94/20 

small animal imaging MRI scanner (Bruker Biospin MRI GmbH, Ettlingen, Germany) 

equipped with a 1H/13C dual-tuned single-channel transmit/receive coil with an inner 

diameter of 72 mm. Hyperpolarized 13C pyruvate was produced using the HyperSense DNP 

polarizer (Oxford Instruments Molecular Biotools Ltd, Abingdon, UK). The polarization 

levels were estimated at the beginning of injection. For 13C transmit gain calibration, an 8 

M 13C urea syringe phantom was placed near the phantom and mouse body. Post-processing 

was implemented in MATLAB (MathWorks, Natick, MA). 
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Figure 3.1. Proposed acquisition scheme of hyperpolarized 13C dynamic SPICE. (a) Two 

components of the pulse sequence: The D1 dataset is acquired using centric ordered 

FIDCSI and the D2 dataset is acquired using EPSI with a bipolar gradient during dynamic 

frames. (b) Sampling trajectories of D1 dataset and D2 dataset. For EPSI, the readout 

direction is the kx-axis and the phase-encoding direction is the ky-axis with centric order. 

(c) Signal evolution of metabolites acquired from unlocalized spectroscopy and 

corresponding acquisition timing of datasets. 
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3.3 Results 

3.3.1 Simulations 

Figure 3.2 shows the results for the consistency of spectral basis (𝜑𝑙) over time for the 

simulation and in vivo experiment. In the simulation, the model order, L, was determined 

to be 2 based on the power of singular values of the D1 dataset (Figure 3.2a). Without noise, 

the cosine similarity of 𝜑1  and 𝜑2  exceeded 0.95 throughout the dynamic frames. 

However, as noise was added, the cosine similarity of 𝜑2 decreased to 0 at the 19th frame, 

while that of 𝜑1 exceeded 0.90 (Figure 3.2b). This supports the fact that the reduction of 

cosine similarity derives from the noise. The spectrogram of 𝜑𝑙  shows the noise 

robustness of 𝜑1 and noise sensitivity of 𝜑2 according to dynamic frames (Figure 3.2c). 

This indicates that noise becomes prevalent when the spectral basis functions are extracted 

at the later dynamic frame; correspondingly, the cosine similarity becomes smaller. In the 

in-vivo experiment, the model order, L, was determined to be 3 based on the power of 

singular values of the D1 dataset (Figure 3.2e). The cosine similarities of 𝜑2 and 𝜑3 

decreased to 0.5 and 0, respectively, at the 19th frame, while the cosine similarity of 𝜑1 

exceeded 0.90 (Figure 3.2f). The noise sensitivity became prominent when the spectral 

basis functions were extracted at the later dynamic frame. 

Figure 3.3 shows the effect of acquisition timing of the D1 dataset on the accuracy of the 

estimated 𝑘𝑝𝑙. Each acquisition timing corresponds to a dynamic frame. For early dynamic 
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frame (1~10), the error of the estimated 𝑘𝑝𝑙 was within 5 % as the cosine similarity over 

0.85 and noise std under 0.1. After the 11th dynamic frame, the estimated 𝑘𝑝𝑙  was 

increasingly overestimated as cosine similarity reduced and noise std increased. The 

overestimation was substantial for low 𝑘𝑝𝑙. For the D1 dataset acquired before the lactate 

peak (i.e., at dynamic frames -7 to -1), 𝑘𝑝𝑙 was underestimated (Figure 3.4). Figure 3.5 

shows the effect of the spatial resolution of the D1 dataset on the accuracy of the estimated 

𝑘𝑝𝑙. Regardless of the spatial resolution of the D1 dataset, the error of the estimated 𝑘𝑝𝑙 

was consistent within 5% (Figure 3.5b and 3.5d).  
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Figure 3.2. Consistency analysis for spectral basis according to the dynamic frame (a-d: simulation, e-h: in-vivo). (a) 

Singular values of the D1 dataset, (b) cosine similarity with noise and without noise for 𝜑1 and 𝜑2, (c) Spectrogram of 

𝜑1 and 𝜑2 with regard to dynamic frames, and (d) Spectral distribution of 𝜑1 and 𝜑2 at dynamic frame 1. (e) Rank of 

the D1 dataset, (f) Cosine similarity for 𝜑1, 𝜑2, and 𝜑3, (g) Spectrogram of 𝜑1, 𝜑2, and 𝜑3 with regard to dynamic 

frames, and (h) Spectral distribution of 𝜑1, 𝜑2, and 𝜑3 at dynamic frame 1. 
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Figure 3.3. Effect of dynamic frame of D1 dataset on accuracy of 𝑘𝑝𝑙  estimation. (a) 

Numerical phantom composed of seven vials. The 𝑘𝑝𝑙 of each vial was set from 0.002 to 

0.026 with a step size of 0.004. (b) Estimated 𝑘𝑝𝑙 of each vial and (c) Standard deviation 

of noise and cosine similarity according to the dynamic frame from which the D1 dataset 

was extracted. 

Figure 3.4. Effect of the acquisition timing of the D1 dataset on the estimated 𝑘𝑝𝑙. The 

true 𝑘𝑝𝑙 values for vial 1 to vial 7 are 0.026 to 0.002 with step size of 0.004, which is 

depicted in the left vertical axis. Note that the index of dynamic frame -1 to -7 indicate 1 

sec to 7 sec before the maximum lactate signal. 
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Figure 3.5. Effect of spatial resolution of the D1 dataset on the estimated 𝑘𝑝𝑙 . (a) 

Numerical phantom composed of seven vials. The 𝑘𝑝𝑙 of each vial was set from 0.002 to 

0.026 with a step size of 0.004. (b) Estimated 𝑘𝑝𝑙 of each vial according to the spatial 

resolution of the D1 dataset. (c) Simplified numerical phantom representing the kidney. 

The 𝑘𝑝𝑙 of each tissue was set to 0.006 (vasculature), 0.014 (medulla), and 0.018 (cortex). 

(d) Estimated 𝑘𝑝𝑙 of each tissue according to the spatial resolution of the D1 dataset. 
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3.3.2 Phantom experiment 

Figure 3.6 shows the results of dynamic SPICE imaging for the enzyme phantom 

experiment. The pyruvate and lactate peak maps are presented in representative dynamic 

frames (Figure 3.6d). The 𝑘𝑝𝑙 map was measured uniformly (Figure 3.6b), and the mean 

and standard deviation of the 𝑘𝑝𝑙 map of the given ROI (black line in Figure 3.6b) was 

0.0113 ± 0.0019. Regions outside of the ROI were excluded due to the turbulence effects 

during the injection of the pyruvate solution. Nevertheless, these regions also showed 

relatively homogeneous 𝑘𝑝𝑙 values as compared to the heterogeneous metabolite maps. 

The estimated 𝑘𝑝𝑙 map from dynamic SPICE showed approximately 10% overestimation 

compared to the measurement using unlocalized spectroscopy (𝑘𝑝𝑙 = 0.0103). 

Figure 3.6. In vitro enzyme phantom experiment. (a) T2 reference image. (b) Estimated 

𝑘𝑝𝑙 map. (c) Time course of metabolites from unlocalized spectroscopy during 7 dynamic 

frames. The signal intensity of metabolites inside the black line of the 𝑘𝑝𝑙  map was 

averaged. (d) Metabolite map of pyruvate and lactate at each dynamic frame.  
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3.3.3 In-vivo experiment 

Figure 3.7 shows the results for the ND and HFD mouse kidney using the proposed 

acquisition scheme. Representative metabolite maps and the 𝑘𝑝𝑙 map for ND mouse are 

provided in Figure 3.7a and Figure 3.7c respectively. The estimated 𝑘𝑝𝑙  was 

approximately 0.01 throughout the kidney, including the cortex and medulla, while it was 

0.007 in the vasculature region. The spectrum of the three representative voxels provided 

in Figure 3.7d shows high SNR even at the 3rd dynamic frame. Representative metabolite 

maps and the 𝑘𝑝𝑙 map for the HFD mouse are provided in Figure 3.8a and Figure 3.8c, 

respectively. The pyruvate map shows a higher value in the cortex than in the medulla, 

while the lactate map shows a similar value throughout the kidney (Figure 3.8a). This is 

represented in the 𝑘𝑝𝑙 map. The estimated 𝑘𝑝𝑙 was approximately 0.02 at the medulla, 

0.017 at the cortex, and 0.011 at the vasculature (Figure 3.8c). The spectrum from the 3rd 

dynamic frame is shown in Figure 3.8d. The generation of alanine in the medullar and 

cortex was observed (red arrow in Figure 3.8d), which was not the case for the ND mouse. 

Table 3.1 shows the ROI analysis of the 𝑘𝑝𝑙 map for the ND and HFD mice. The averaged 

𝑘𝑝𝑙 was higher in the HFD mice than in the ND mice for the three ROIs. The difference in 

the two groups was significant in the medulla (p value<0.05), but non-significant in the 

vasculature. 
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Figure 3.7. In-vivo experiment of ND mouse overlayed to the T2 reference image. (a) Metabolite map of pyruvate, lactate, 

and alanine in the dynamic frame. (b) T2 reference image of ND mouse. (c) Estimated 𝑘𝑝𝑙 map. (d) Spectrum of vascular, 

medullar, and cortical regions at the 3rd dynamic frame. 
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Figure 3.8. In-vivo experiment of HFD mouse overlayed to the T2 reference image. (a) Metabolite map of pyruvate, lactate, 

and alanine in the dynamic frame. (b) T2 reference image of HFD mouse. (c) Estimated 𝑘𝑝𝑙 map. (d) Spectrum of vascular, 

medullar, and cortical regions at the 3rd dynamic frame. 
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* p < 0.05 

Table 3.1. ROI analysis of 𝑘𝑝𝑙 (s-1) map for ND and HFD mice. 

 

3.4 Discussion 

The purpose of this study was to investigate the feasibility of dynamic hyperpolarized 

13C MRSI using the SPICE technique and to estimate the conversion constant rate 𝑘𝑝𝑙.  

In the model of the partially separable function, the model order determines the degrees 

of spectral variations of the D1 dataset. Theoretically, to extract the spectral basis through 

SVD, the spectral-spatial matrix of size 𝑁𝑡 ×𝑁𝑘𝑥𝑘𝑦 has to satisfy 𝑁𝑡 > 𝐿 and 𝑁𝑘𝑥𝑘𝑦 >

𝐿 [42]. In this study, the model order of simulation was consistent at 2 regardless of the 

extent of spatial frequencies, while that of the in-vivo experiments varied from 3 to 5. This 

is because 𝜑1 and 𝜑2 are decomposed as different bases, although the dominant peaks 

such as pyruvate are identical (Figure 3.2h). Effects such as B0 inhomogeneity cause these 

differences. Moreover, an additional basis could be extracted when large amounts of other 

metabolites were produced (e.g., alanine or bicarbonate). Although the bicarbonate peak 

was not observed in this study owing to limited signal power [53], the SNR improvements 

in both D1 and D2 might detect low-power signals at the expense of low spatial resolution. 

 Vasculature Medulla Cortex 

ND (n=3) 0.0087±0.0013 0.0119±0.0022* 0.0148±0.0023 

HFD (n=3) 0.0132±0.0050 0.0195±0.0005* 0.0224±0.0054 
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Here, the size of the D1 dataset in the spatial dimension was 4×4 based on the observation 

of singular values. This has to be considered experimentally and optimized according to 

the spectral-spatial composition of the target. 

The reliability of using the basis extracted from a single time point  ̶ in our case, at the 

maximum lactate signal  ̶ has been demonstrated in two parts: 1) by showing the 

consistency of the spectral basis over time and 2) by evaluating the accuracy of 𝑘𝑝𝑙 

according to various dynamic frames. The consistency of the spectral basis over time was 

maintained during several dynamic frames despite T1 relaxation, RF excitation, and 

metabolic conversion effects. This indicates that the acquisition timing of the D1 dataset 

does not significantly affect the subspace structure of the spectral basis. However, the 

consistency was disrupted with the reduction of SNR. The effect of noise was prominent 

as the singular number (i.e., index of spectral basis) increased. This was due to the 

characteristic of SVD, whereby the denoising effect on the basis component became 

weaker as the singular number increased. The collapse of the consistency owing to the SNR 

decrease deviated the accuracy of the estimated 𝑘𝑝𝑙 (Figure 3.3b - 3.3c). It was also shown 

that if the acquisition begins before the sub-metabolite peak (here, the lactate peak), i.e., 

during the upslope period, then 𝑘𝑝𝑙 is incorrectly estimated (Figure 3.4). For this period, 

the amount of conversion from the substrate to sub-metabolite is insufficient, resulting in 

misdetection of the spectral basis. This supports the fact that the acquisition of a spectral 

basis with high SNR is optimal for dynamic hyperpolarized 13C MRSI.  
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The spatial resolution in a single dynamic frame was acquired at 1.09×1.09 mm2 and 

1.25×1.25 mm2 for ND mice and HFD mice respectively. Note that the FOV of each mouse 

was determined as the range including the entire body in the axial slice. Although it was 

difficult to distinguish the anatomic structure of the cortex and medulla in the 𝑘𝑝𝑙 map, 

the 𝑘𝑝𝑙 value of HFD mice was higher than that of ND mice throughout the kidney. It has 

been reported that almost 90 % of the filtered glucose is reabsorbed into the kidney cortex 

via sodium-glucose cotransporter type 2 (SGLT-2) and the remaining glucose is reabsorbed 

by the medulla via SGLT-1 [54]. However, hyperglycemia in blood leads to higher glucose 

in urine, increasing the absorption of glucose in the kidney[55]. Along with previous 

hyperpolarized 13C studies in the kidney of the diabetic rats [24, 25], our results show that 

increased glucose load in the kidney by hyperglycemia leads to higher hyperpolarized 13C 

lactate conversion (Table 3.1).  

In the enzyme phantom experiment, the beginning of the scan for dynamic SPICE was 

determined based on unlocalized spectroscopy and the resulting 𝑘𝑝𝑙 values were rather 

free from bias owing to the inadequate acquisition timing of the D1 dataset. Nevertheless, 

the estimated 𝑘𝑝𝑙 map from dynamic SPICE showed approximately 10 % overestimation 

compared to the measurement using unlocalized spectroscopy. The difference seems to 

derive from the unevenly mixed substrate in the vial phantom. Although the 𝑘𝑝𝑙  map 

exhibits a homogeneous distribution, the metabolite maps shows a more inhomogeneous 

distribution. As future work, more elaborate phantom experiments to improve the accuracy 

of 𝑘𝑝𝑙 estimation should be conducted. 
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The chemical shift slice-offset between pyruvate and lactate was 1.66 mm for all 

experiments (using a 440mT/m gradient system). The displacement was less than 5 % and 

20 % of slice thickness in phantom and in-vivo experiment respectively. As chemical shift 

offset is a classical problem in CSI, and there have been many ways to reduce it this by 

using high BW radiofrequency pulses such as adiabatic pulses [56, 57]. 

In dynamic SPICE, a FIDCSI (i.e., D1 dataset) with limited spatial frequency was 

acquired to extract the spectral basis. The extracted spectral basis did not comprise a single 

metabolite peak but comprised several metabolites with different peak values. The 

possibility of an artificial spectral basis composed of a single metabolite peak has been 

investigated and it was demonstrated that they could not function as spectral base. This 

implies that the spectral basis cannot be generated using only prior knowledge of the 

spectral distribution such as peak positions. Here, the spectral basis was extracted from the 

D1 dataset based on a data-driven approach. 

A similar approach to SPICE MRSI is IDEAL-CSI, where spectral prior knowledge is 

acquired from a slice-selective region at the beginning of the acquisition scheme [31]. This 

spectral prior knowledge is utilized to localize the chemical shift resonance frequencies and 

to precondition the chemical shift encoding matrix. As dynamic SPICE acquires the D1 

dataset using a FIDCSI to extract the spectral basis with high SNR, there is an advantage 

of SNR [37, 38]. The limitation of proposed method is the absence of the upslope curve. 

Due to the difficulty of sequence modification, all the D2 datasets were acquired after the 

acquisition of D1 datasets. As the scan started when lactate was maximum, the upslope 
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curve could not be acquired (Figure 3.1c). In this study, as an alternative, several 

parameters (such as 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 , 𝑡𝑒𝑛𝑑 , 𝑟𝑎𝑡𝑒𝑖𝑛𝑗 , and T1) for dynamic curve fitting were 

estimated from pre-scan. Further improvement can be expected where the acquisition 

scheme interleaves with a ‘(several D2) – (single D1) – (again several D2)’ scheme. 

As a future work, first, D1 acquisition can be modified to improve the accuracy of 𝑘𝑝𝑙 

estimation. This is a problem with many 13C studies, where acquisition tries to sample the 

center regions of the k-space with the highest SNR. A similar problem has arisen in this 

study as well. As seen in Figure 3.4, acquiring D1 too early leads to inaccurate 𝑘𝑝𝑙 

estimation. Therefore, prolonging the beginning of the acquisition seems to be beneficial 

at the expense of SNR. A radial D1 acquisition with golden angle sampling might be 

beneficial in determining the timing more accurately and the SNR. Second, alternative 

kinetic models can be implemented [53, 58]. Here, the consistency of a single basis and the 

accuracy of 𝑘𝑝𝑙 estimation were demonstrated for the two-site exchange model. It will be 

effective in other dynamic models because the extracted spectral bases are affected by noise 

(Figure 3.2) and not by the dynamic variation of metabolite concentration. Lastly, 

reordering of the D1 and D2 elements, or even interleaving them could result in better 𝑘𝑝𝑙 

estimations. By doing so, I can also acquire data from the upslope curve of the dynamics, 

which has been missed in the present implementation. In our current implementation, pulse 

sequence design options limited the implementation of such capabilities. I had to resort to 

the D1 followed by D2 acquisition ordering step. In future work, I expect more flexibility 

in pulse sequence design to perform alternative acquisition timing options. 
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3.5 Conclusion 

In conclusion, I have developed a SPICE-based technique to acquire dynamic 

hyperpolarized 13C MRSI with high spatial-spectral-temporal resolution. The feasibility of 

the proposed method was investigated in simulation and in-vivo. The 𝑘𝑝𝑙  map was 

estimated with an error of less than 10 % through an enzyme phantom experiment. 

Dynamic MR spectroscopic images were acquired from ND mice and HFD mice and 𝑘𝑝𝑙 

values were estimated. The estimated 𝑘𝑝𝑙 map from two animal sets presents a reliable 

difference in the medullar region. The modification of D2 acquisition will be part of future 

work to improve the spatial resolution. 
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Chapter 4 

Blind Source Separation for Myelin Water 

Fraction Mapping using Multi-echo Gradient 

Echo Imaging 

 

4.1 Motivation 

4.1.1 Overview 

In conventional myelin water imaging (MWI), spin-echo (SE) images (referred here as 

‘SE-MWI’) are acquired at multiple echoes to measure signal decay due to T2 relaxation 

[59]. In white matter of the brain, it has been demonstrated that this signal has multiple T2 

components e.g., myelin water and axonal/extracellular water. In order to separate these 

multiple signal sources, the measured signal is fitted to numerical models representing 

multi-exponential T2 relaxation [59, 60]. This allows the separation of fast-decaying 

myelin water signal (i.e., short T2 component) and slow-decaying axonal/extracellular 

water signal (i.e., long T2 component). Myelin water fraction (MWF) is then estimated as 

the ratio of the fast-decaying water signal to the total water signal. 
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In recent studies, multi-echo gradient recalled echo (mGRE) based MWI (referred here 

as ‘GRE-MWI’) has been suggested to separate multi-exponential T2* components [61-

64]. These studies have demonstrated that the mGRE signal can also be separated into 

multiple components mentioned above. Furthermore, GRE-MWI has potential benefits 

such as large volume coverage, fast scan time and insensitivity to the inhomogeneity of the 

transmit field compared to SE-MWI. Despite these advantages, however, GRE-MWI 

suffers from imaging artifacts (e.g. voxel spread function (VSF) effect [65, 66] and 

physiological noise [67]) which render the mGRE signal to deviate from the pre-assumed 

numerical model (e.g. multi-component exponential curves or three component exponential 

curves). Also, the conventional optimization algorithm to solve multi-component 

exponential curves which is a nonlinear least squares algorithm, has instability problems 

regarding initial value selection and local minima [68]. 

Previously, blind source separation (BSS) techniques have been suggested to separate 

sources of the MR signal without any explicit model or with minimum prior information 

[69, 70]. Instead of using numerical models, BSS techniques utilize data-driven properties 

such as “low rankness” or “sparsity”. This allows separating specific signals (e.g. pulsation 

artifacts in fMRI [69], free water in DWI [71]) that are difficult to specify a numerical 

model. Among various BSS algorithms, robust principal component analysis (rPCA) has 

been introduced for separation of background signal in dynamic MRI [72], on/off-

resonance signal representation in multispectral imaging [73] and elimination of MR 

artifacts [74, 75]. Based on singular value decomposition (SVD) analysis, rPCA extracts 
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redundant signal sources using low-rank property (or fixed-rank property) and encourages 

the sparsity of the residual signal. 

In this study, as an alternative to conventional nonlinear least squares approach, a 

modified version of rPCA is developed for signal separation in mGRE targeted for MWF 

mapping. The proposed technique separates mGRE images into two unit-rank components 

(referred to as L1 and L2) and sparse component (referred to as S). In this process, matrix 

hankelization and non-negative matrix factorization (NMF) are utilized to further enhance 

the separation of multi-component exponential signals. This offers L1, L2, and S to 

represent slow-decaying, fast-decaying and artifact components, respectively. An 

alternative MWF map is suggested as the ratio of L2 to sum of L1 and L2. The proposed 

technique is demonstrated in healthy volunteers and clinical patients. 

The rest of this chapter is as follows. In Chapter 4.1.2 and 4.1.3, the conventional model-

based GRE-MWI methods are introduced and the motivation of SVD analysis for the 

mGRE signal is described. In Chapter 4.2, the modification version of rPCA algorithm is 

described. The methods and results of the simulation and in-vivo experiments are described 

in Chapter 4.3 and 4.4, respectively. Finally, Chapter 4.5 contains the discussion and 

conclusion. 

 

4.1.2 Model-based MWF mapping 

The multi-component magnitude model fits the decay curve to the following [76]: 
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𝑆(𝑡) =  ∑ 𝐴𝑗𝑒
−(1/𝑇2,𝑗

∗ )𝑡𝑀
𝑗=1                      (4.1) 

where 𝑆(𝑡) is the measured signal at time t, 𝐴𝑗  is the unknown amplitude of the 

spectral component with relaxation time 𝑇2,𝑗
∗ , 𝑀  is the number of 𝑇2

∗  components. 

Equation (4.1) is typically solved by regularized non-negative least squares (rNNLS) 

forming a continuous spectral distribution of 𝑇2
∗ components [76]. Then, the myelin water 

component (i.e., fast-decaying signal) and axonal/extracellular water component (i.e., 

slowly-decaying signal) are separated based on a cutoff 𝑇2
∗ (e.g. 25ms) value [77, 78].  

The three-component magnitude model fits the decay curve to the following: 

𝑆(𝑡) = 𝐴𝑚𝑦𝑒
−(1/𝑇2,𝑚𝑦

∗ )𝑡 + 𝐴𝑎𝑥𝑒
−(1/𝑇2,𝑎𝑥

∗ )𝑡 + 𝐴𝑒𝑥𝑒
−(1/𝑇2,𝑒𝑥

∗ )𝑡       (4.2) 

where 𝐴𝑚𝑦, 𝐴𝑎𝑥  𝑎𝑛𝑑 𝐴𝑒𝑥  are the amplitude of the three water components, 

𝑇2,𝑚𝑦
∗ , 𝑇2,𝑎𝑥

∗  and 𝑇2,𝑒𝑥
∗  are 𝑇2

∗ values of the three water components [61, 78].  

Lastly, the three-component complex model fits the decay curve to the following [63]: 

 𝑆(𝑡) = (𝐴𝑚𝑦𝑒
−(1/𝑇2,𝑚𝑦

∗ +𝑖2𝜋∆𝑓𝑏𝑔+𝑚𝑦)𝑡 + 𝐴𝑎𝑥𝑒
−(1/𝑇2,𝑎𝑥

∗ +𝑖2𝜋∆𝑓𝑏𝑔+𝑎𝑥)𝑡 

            +𝐴𝑒𝑥𝑒
−(1/𝑇2,𝑒𝑥

∗ +𝑖2𝜋∆𝑓𝑏𝑔+𝑒𝑥)𝑡)𝑒−𝑖𝜑0                  (4.3) 

where ∆𝑓𝑏𝑔+𝑚𝑦, ∆𝑓𝑏𝑔+𝑎𝑥  and  ∆𝑓𝑏𝑔+𝑒𝑥  are the frequency offset of the three water 

components plus the sum of background frequency offset, 𝜑0 is the 𝐵1
+ phase offset.  

For the three-component models, Eqs (2) and (3), the parameters are estimated by 
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minimizing the least-squares errors using an iterative nonlinear curve-fitting algorithm [63, 

68, 78]. The MWF can be calculated by dividing the myelin water component (i.e., fast-

decaying signal) to the total water component. In this approach, the initial values and 

bounds of the fitting parameters need to be set to avoid getting trapped in local minima (e.g. 

see [79]). 

 

4.1.3 BSS in mGRE images 

I denote matrices by boldface uppercase letters, operators by lightface uppercase letters, 

vectors by boldface lowercase italics, constants by lightface uppercase italics. ℂ, ℝ and 

ℝ+ represent a set of complex, real and positive-real values, respectively. 

Among the various BSS methods, SVD analysis can be performed on the magnitude of 

mGRE data to separate source signals without any constraint of the signal such as the 

predetermined model and initial/boundary values. 

In order to apply standard SVD, the mGRE data, 𝑚(∙) is represented to the spatio-

temporal Casorati matrix as follows: 

𝐌(𝒓, 𝑡) =

[
 
 
 
𝑚(𝒓1, 𝑡1) 𝑚(𝒓1, 𝑡2)
𝑚(𝒓2, 𝑡1) 𝑚(𝒓2, 𝑡2)

⋯
⋯

𝑚(𝒓1, 𝑡𝑁𝑡)

𝑚(𝒓2, 𝑡𝑁𝑡)

⋮                 ⋮ ⋱ ⋮
𝑚(𝒓𝑁𝑠 , 𝑡1) 𝑚(𝒓𝑁𝑠 , 𝑡2) ⋯ 𝑚(𝒓𝑁𝑠 , 𝑡𝑁𝑡)]

 
 
 

           (4.4) 

where 𝐌 ∈ ℝ+
𝑁𝑠×𝑁𝑡 , 𝑁𝑠  is the total number of spatial components (i.e. number of 
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pixels) and 𝑁𝑡  is the number of temporal components (i.e. number of echoes). The 

standard SVD of 𝐌 is represented as: 

𝐌 = 𝐔𝐒𝐕T = ∑ 𝜆𝑘𝒖𝑘𝒗𝑘
𝑇min {𝑁𝑠, 𝑁𝑡}

𝑘=1                  (4.5) 

where {𝜆𝑘}𝑘=1
min {𝑁𝑠, 𝑁𝑡} ∈ ℝ  are the singular values of 𝐌 , {𝒖𝑘}𝑘=1

min {𝑁𝑠, 𝑁𝑡} ∈

ℝmin {𝑁𝑠, 𝑁𝑡}×1  are the left singular vectors representing the spatial weight, 

{𝒗𝑘}𝑘=1
min {𝑁𝑠, 𝑁𝑡} ∈ ℝmin {𝑁𝑠, 𝑁𝑡}×1 are the right singular vectors representing the temporal 

basis. The rank-𝑅 approximation of 𝐌 is obtained by: 

𝐌̂ = 𝐔̂𝐒̂𝐕̂T =∑𝜆𝑘𝒖𝑘𝒗𝑘
𝑇

𝑅

𝑘=1

, 

𝑠. 𝑡.  ‖𝐌 − 𝐌̂‖
𝐹
= √∑ 𝜆𝑘

min {𝑁𝑠, 𝑁𝑡}
𝑘=𝑅+1                   (4.6) 

where 𝐔̂ ∈ ℝ𝑁𝑠×𝑅 , 𝐒̂ ∈ ℝ𝑅×𝑅 , 𝐕̂ ∈ ℝ𝑁𝑡×𝑅, 𝐹 represents the Frobenius norm. For the 

example mGRE data used here, the rank was approximated to four where the power of the 

residual signal is below 2%. 

Representative {𝒖𝑘}𝑘=1
𝑅  and {𝒗𝑘}𝑘=1

𝑅  are shown in Figure 4.1a. As a result of standard 

SVD, signal sources are separated into the {𝒗𝑘}𝑘=1
𝑅 , which is ordered by the redundancy 

of the source signal. Among the temporal bases in Figure 4.1a, the first basis, 𝒗1 , 

represents a slow-decaying T2
* relaxation (T2

* ≈ 44ms) with relatively homogeneous spatial 

weights, 𝒖1 . The other bases, 𝒗2 , 𝒗3 , and 𝒗4 , however, have negative values which 
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cannot represent a true tissue-oriented T2
* relaxation signal. Particularly, 𝒗2 represents 

fast-decaying signal but biased to negative value (Figr1a). The reason for this is that real-

valued exponential decays (e.g., multi component T2
* relaxation signals) are highly 

correlated with each other and separation of these signal sources are badly-conditioned 

under the constraint of orthogonality. Nevertheless, the spatial weight maps represent 

different anatomic features for 𝒖2, 𝒖3, and 𝒖4. 

Through SVD, I have described the potential of BSS in mGRE data. Although the 

temporal basis cannot reveal the actual feature of T2
* relaxation, the signal sources can be 

distinguished by different characteristics. 
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Figure 4.1. A conceptual illustration of BSS in spatio-temporal mGRE data matrix (subject 1). (a) Standard SVD applied to 

mGRE data matrix and (b) NMF applied to mGRE data matrix with hankelization (𝑙 =15). For each BSS scheme, four 

representative temporal bases ({𝒗𝑘}𝑘=1
4  and {𝒉𝑘}𝑘=1

4 ) and spatial weights ({𝒖𝑘}𝑘=1
4  and {𝒘𝑘}𝑘=1

4 ) are shown. Note that 

BSS using NMF provides temporal bases that corresponds more to the physical signal characteristics than using SVD. 
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4.2 Theory 

4.2.1 Priorities of mGRE signal 

In order to overcome the aforementioned problem when using standard SVD, additional 

constraints in the signal sources were incorporated which enforces the non-negativity of 

the temporal basis and exponential characteristics of T2
* relaxation. 

As a variant of SVD, non-negative matrix factorization (NMF) was implemented to take 

into consideration that the T2
* relaxation of the myelin and axonal/extracellular water 

components is non-negative [80]. This constraint is similar to a common assumption used 

in conventional MWI processing (i.e. NNLS) [61, 77, 78]. The NMF of the spatio-temporal 

matrix 𝐌 is now represented as:  

𝐌 ≈ 𝐖̂𝐇̂T = ∑ 𝒘𝑘𝒉𝑘
𝑇𝑅

𝑘=1                                                    (4.7) 

where 𝐖̂ ∈ ℝ+
𝑁𝑠×𝑅, 𝐇̂ ∈ ℝ+

𝑁𝑡×𝑅, {𝒘𝑘}𝑘=1
𝑅 ∈ ℝ+

𝑁𝑠×1  are the left singular vectors 

representing the spatial weight, {𝒉𝑘}𝑘=1
𝑅 ∈ ℝ+

𝑁𝑡×1  are the right singular vectors 

representing the temporal basis. In conventional NMF, 𝐖̂ and 𝐇̂ are obtained by: 

min‖𝐌− 𝐖̂𝐇̂T‖
𝐹

2
         𝑠. 𝑡.  𝐖̂, 𝐇̂ ≥ 0                                     (4.8a) 

H ← H⊙
WTM

WTWH
,    W ← W⊙

XHT

WHHT
                                     (4.8b) 

using multiplicative update rule with element-wise multiplication operator ⊙ [81]. As 
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the results of NMF depend on the initial value of 𝐖̂  and 𝐇̂ , various initialization 

techniques have been suggested [82-84]. Here, based on the observation of standard SVD 

in mGRE data which has potential to represent tissue-oriented structure (Figure 4.1a), NMF 

with SVD based initialization method in [82] referred to as nonnegative double singular 

value decomposition  (NNDSVD) was implemented. One of the features of NNDSVD is 

that the uniqueness of initial value guarantee the convergence to the same solution [82]. 

Prior to the NMF operation, as a temporal operator, hankelization was implemented in 

order to enforce the unit rank property of each temporal basis [85]. The hankelized matrix 

of 𝐌 with hankelization length 𝑙 is shown in Figure 4.1b and is represented as [86, 87]: 

ℋl(𝐌(𝒓, 𝑡)) =

[
 
 
 
𝑚(𝒓1, 𝑡1) 𝑚(𝒓1, 𝑡2)

𝑚(𝒓1, 𝑡2) 𝑚(𝒓1, 𝑡3)

⋯
⋯

𝑚(𝒓1, 𝑡𝑙)

𝑚(𝒓1, 𝑡𝑙+1)
⋮                 ⋮ ⋱ ⋮

𝑚(𝒓𝑁ℎ , 𝑡1) 𝑚(𝒓𝑁ℎ , 𝑡2) ⋯ 𝑚(𝒓𝑁ℎ , 𝑡𝑁𝑡)]
 
 
 

                      (4.9) 

 where ℋl(𝐌) ∈ ℝ+
𝑁ℎ×𝑙  and 𝑁ℎ = 𝑁𝑠(𝑁𝑡 − 𝑙 + 1) . When the echo spacing is 

equidistant (i.e., 𝑡𝑖 − 𝑡𝑖−1 = ∆𝑇𝐸), the relaxation rate for the 𝑗𝑡ℎ component in Eq. 4.1 is 

proportional by an amount 𝑒−(1/𝑇2,𝑗
∗ )∆𝑇𝐸  for any echo time. This indicates that the 

hankelization of a mono-exponential signal has unit-rank. Based on this, the hankelization 

was implemented in order to encourage the unit-rank property of each exponential decay 

[85]. The hankelization length, l, was selected to half the total number of echoes as an 

optimal length for exponential signal [88]. 

After incorporating these two constraints (Figure 4.1b), the first and second temporal 
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basis, 𝒉1  and 𝒉2 , become closer to pure exponential decays. The separated mono-

exponential T2
* values corresponds well to the slow (i.e., axonal/extracellular water signal) 

and fast (i.e., myelin water signal) components (T2
* of 𝒉1 = 52.4ms, T2

* of 𝒉2 = 9.9ms) 

[61]. Furthermore, the other temporal bases, 𝒉3  and 𝒉4 , represent oscillating signals 

which are related to remnant residual components including artifacts. 

 

4.2.2 Algorithm of the proposed rPCA-MWF 

Based on the aforementioned ideas, a modified rPCA to separate three distinct sources 

from mGRE data is presented. The original rPCA separates the signal sources into a low-

rank component, 𝐋, and a sparse component, 𝐒, by solving the minimization problem 

with convex objective function as [9, 74] :  

𝒥(𝐋, 𝐒)  ≡
1

2
‖𝐋 + 𝐒 −𝐌‖2

2 + μ‖𝐋‖∗ + ρ‖𝐒‖1              (4.10) 

where  𝐌, 𝐋, 𝐒 ∈ ℝ𝑁𝑠×𝑁𝑡 ,  ‖∙‖∗ denotes the nuclear norm, ‖∙‖1  denotes the ℓ1 -norm, 

𝜇 and 𝜌 denote regularization parameters for low rankness and sparsity, respectively. In 

this study, the signal source of mGRE data was separated to two unit-rank components (i.e., 

slow-decaying signal (L1) and fast-decaying signal (L2)) and sparse component (i.e., 

residual artifact signal (S)). The minimization problem min
𝐋1,𝐋2,𝐒

𝒥(𝐋1, 𝐋2, 𝐒) with the convex 

objective function is defined as: 
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 𝒥(𝐋1, 𝐋2, 𝐒)  ≡
1

2
‖𝐋1 + 𝐋2 + 𝐒 −𝐌‖2

2  

                          +μ1∑ ‖ℛ𝑟(ℋl(𝐋1))‖r ∗
+ μ2∑ ‖ℛ𝑟(ℋl(𝐋2))‖r ∗

+ ρ‖Ψ(𝐒)‖1  (4.11) 

 where ℋl  denotes hankelization operator in the temporal domain, Ψ  denotes 

temporal sparsifying operater (1D FFT in the echo domain), ℛ𝑟 denotes the extraction of 

local patches for locally low-rank (LLR) structure at the 𝑟𝑡ℎ patch [89-91], 𝜇1, 𝜇2 and 𝜌 

denote regularization parameters for LLR and sparsity respectively. The LLR constraint, 

which has higher redundancy than entire image, was implemented to encourage the low 

rankness of local patches for 𝐋1  and 𝐋2  [89-91]. Equation (4.11) is solved using the 

alternating direction method of multipliers (ADMM) [11, 92, 93]. Based on the variable 

splitting scheme in [93], Eq (11) is re-formulated as: 

min
𝐔1,r,𝐔2,r,𝐔3,

𝐋1,𝐋2,𝐒

1

2
‖𝐋1 + 𝐋2 + 𝐒 −𝐌‖2

2 + 𝜇1∑ ‖𝐔1,r‖∗𝑟 + 𝜇2∑ ‖𝐔2,r‖∗𝑟  + 𝜌‖𝐔3‖1  

  𝑠. 𝑡. {

𝐔1,r = ℛ𝑟(ℋl(𝐋1))

𝐔2,r = ℛ𝑟(ℋl(𝐋2))

𝐔3 = Ψ(𝐒)           

                               (4.12) 

and the associated augmented Lagrangian function is: 

ℒ𝐴 =
1

2
‖𝐋1 + 𝐋2 + 𝐒 −𝐌‖2

2  + 𝜇1∑ ‖𝐔1,r‖∗𝑟 + 𝜇2∑ ‖𝐔2,r‖∗𝑟  + 𝜌‖𝐔3‖1  

+∑ 〈𝐙1,r, ℛ𝑟(ℋl(𝐋1)) − 𝐔1,r〉𝑟 + ∑ ‖
𝛿1

2
ℛ𝑟(ℋl(𝐋1)) − 𝐔1,r‖

2

2

𝑟   
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+∑ 〈𝐙2,r, ℛ𝑟(ℋl(𝐋2)) − 𝐔2,r〉𝑟 + ∑ ‖
𝛿2

2
ℛ𝑟(ℋl(𝐋2)) − 𝐔2,r‖

2

2

𝑟   

+〈𝐙3, Ψ(𝐒) − 𝐔3〉 +
𝛿3

2
‖Ψ(𝐒) − 𝐔3‖2

2                (4.13) 

where 𝐙1,r , 𝐙2,r  and 𝐙3  are Lagrangian multipliers. Ignoring constants irrelevant to 

optimization, Eq (13) can be written as:  

ℒ𝐴 =
1

2
‖𝐋1 + 𝐋2 + 𝐒 −𝐌‖2

2 + 𝜇1∑ ‖𝐔1,r‖∗𝑟 + 𝜇2∑ ‖𝐔2,r‖∗𝑟  + 𝜌‖𝐔3‖1  

+∑
𝛿1

2
‖ℛ𝑟(ℋl(𝐋1)) + 𝛿1

−1𝐙1,r − 𝐔1,r‖
2

2
 𝑟   

+∑
𝛿2

2
‖ℛ𝑟(ℋl(𝐋2)) + 𝛿2

−1𝐙2,r − 𝐔2,r‖
2

2
 𝑟   

+
𝛿3

2
‖Ψ(𝐒) − 𝛿3

−1𝐙3 −𝐔3‖2
2
                  (4.14) 

where 𝛿1, 𝛿2, 𝛿3 denotes regularization parameters. The ADMM minimizes ℒ𝐴 over 

𝐔1, 𝐔2, 𝐔3, 𝐋1, 𝐋2 and 𝐒 separately by solving sub-problems with closed-form solutions:  

𝐔1,r
(𝑘+1) = argmin

𝐔1,r

𝜇1
𝛿1
‖𝐔1,r‖∗ +

1

2
‖ℛ𝑟 (ℋl(𝐋1

(𝑘))) + 𝛿1
−1𝐙1,r

(𝑘) − 𝐔1,r‖
2

2
 

  = 𝑆𝑉𝑇𝜇1/𝛿1 (ℛ𝑟 (ℋl(𝐋1
(𝑘))) + 𝛿1

−1𝐙1,r
(𝑘))                   (4.15a) 

𝐔2,r
(𝑘+1) = argmin

𝐔2,r

𝜇2
𝛿2
‖𝐔2,r‖∗ +

1

2
‖ℛ𝑟 (ℋl(𝐋2

(𝑘))) + 𝛿2
−1𝐙2,r

(𝑘) − 𝐔2,r‖
2

2
 

= 𝑆𝑉𝑇𝜇2/𝛿2 (ℛ𝑟 (ℋl(𝐋2
(𝑘))) + 𝛿2

−1𝐙2,r
(𝑘))                 (4.15b) 
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𝐔3
(𝑘+1) = argmin

𝐔3

𝜌

𝛿3
‖𝐔3‖1 +

1

2
‖𝐒(𝑘) + 𝛿3

−1𝐙3
(𝑘) −𝐔3‖2

2
 

= 𝑆𝑇𝜌/𝛿3(𝐒
(𝑘) + 𝛿3

−1𝐙3
(𝑘))                         (4.15c) 

where 𝑆𝑉𝑇𝜇1/𝛿1  and 𝑆𝑉𝑇𝜇2/𝛿2  denotes (hard) singular value thresholding operators 

using NMF for each local patches r, 𝑆𝑇𝜌/𝛿3 denotes soft thresholding operators [9, 94].  

                    𝐋1
(𝑘+1) = argmin

𝐋1

1

2
‖𝐋1 + 𝐋2

(𝑘) + 𝐒(𝑘) −𝐌‖
2

2
  

+∑
𝛿1

2
‖ℛ𝑟(ℋl(𝐋1)) + 𝛿1

−1𝐙1,r
(𝑘) − 𝐔1,r

(𝑘)‖
2

2
 𝑟   

 =
1

1+𝛿1
(𝐌 − 𝐋2

(𝑘) − 𝐒(𝑘) + 𝛿1𝐔1 − 𝐙1)                  (4.16a) 

                    𝐋2
(𝑘+1) = argmin

𝐋2

 
1

2
‖𝐋1

(𝑘+1) + 𝐋2 + 𝐒
(𝑘) −𝐌‖

2

2
  

  +∑
𝛿2

2
‖ℛ𝑟(ℋl(𝐋2)) + 𝛿2

−1𝐙2,r
(𝑘) − 𝐔2,r

(𝑘)‖
2

2
 𝑟   

 =
1

1+𝛿2
(𝐌 − 𝐋1

(𝑘+1) − 𝐒(𝑘) + 𝛿2𝐔2 − 𝐙2)               (4.16b) 

                    𝐒(𝑘+1) = argmin
𝐒

 
1

2
‖𝐋1

(𝑘+1) + 𝐋2
(𝑘+1) + 𝐒 −𝐌‖

2

2
  

+
𝛿3
2
‖Ψ(𝐒) − 𝛿3

−1𝐙3
(𝑘) −𝐔3

(𝑘)‖
2

2
 

=
1

1+𝛿3
(𝐌 − 𝐋1

(𝑘+1) − 𝐋2
(𝑘+1) + 𝛿3𝐔3 − 𝐙3)            (4.16c) 
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where dehankelization was performed while solving Eq (16a) and Eq (16b). 

Corresponding Lagrangian multipliers are updated as: 

𝐙1
(𝑘+1) = 𝐙1

(𝑘) + 𝐋1
(𝑘+1) −𝐔1

(𝑘+1)                (4.17a) 

𝐙2
(𝑘+1) = 𝐙2

(𝑘) + 𝐋2
(𝑘+1) − 𝐔2

(𝑘+1)                (4.17b) 

𝐙3
(𝑘+1) = 𝐙3

(𝑘) +Ψ(𝐒(𝑘+1)) − 𝐔3
(𝑘+1)              (4.17c) 

The regularization parameters for the proposed rPCA-MWF were empirically set as 

follows: 𝜇1 = 1,  𝜇2 = 1,  𝜌 = 0.5 , 𝛿1 = 0.01,  𝛿2 = 0.01,  𝛿3 = 0.0005 . The local 

patch size and convergence tolerance were empirically set as follows: patch size = 8x8x8, 

and 𝜖 = 10−6. Here, the convergence rate was estimated to relative residual (‖𝐗k+1 −

𝐗k‖
2
/‖𝐗k‖

2
× 100 ). A summary of the iteration process is described in Table 4.1. (See 

Figure 4.2 for simulations on the determination of hyperparameters and the convergence 

rate of the algorithm). 

Table 4.1. rPCA-MWF algorithm
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Figure 4.2. Simulation results for determination of hyperparameters and convergence plot of the iterative algorithm. The 

RMSE is shown for difference hyperparameter settings. (a) Regularization parameters (𝜇1, 𝜇2 and ρ), (b) ADMM penalty 

parameters (𝛿1, 𝛿2 and 𝛿3) and (c) patch size (𝑟). (d) Convergence rate with respect to iteration number (𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =

‖𝑿k+1 − 𝑿k‖
2
/‖𝑿k‖

2
× 100 where 𝐗k = 𝑳𝟏

k + 𝑳𝟐
k + 𝑺k). The hyperparameters used in this study are marked by red 

boxes and arrows. The regularization parameters for rankness (i.e., 𝜇1 and 𝜇2) and the ADMM penalty parameters (i.e., 

𝛿1 and 𝛿2) were set identically as they possess the same attributes. 
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Afterwards, the MWF was mapped as the ratio of 2nd unit rank component to total unit-

rank component at TE1 for each voxel; 

𝑀𝑊𝐹(𝒓) =
𝐋2(𝒓,𝑇𝐸1)

𝐋1(𝒓,𝑇𝐸1)+𝐋2(𝒓,𝑇𝐸1)
× 100 (%)            (4.18) 

The residual signal was mapped to the sparse component, which can also be sparsified 

in the frequency domain. 

I provide the source code and related data (in MATLAB) to reproduce most of the results 

described in this paper. The source code and related data can be downloaded from: 

https://github.com/Yonsei-MILab. 

 

4.3 Methods 

4.3.1 Comparison of Model-based MWF and rPCA-MWF 

Among the GRE-MWI models, two types of model-based method were adopted; three-

component magnitude and complex model which I refer here as “magnitude model-based” 

(Eq. 4.2) and “complex model-based” (Eq. 4.3) respectively. In simulations, magnitude 

model-based MWF was compared to rPCA-MWF due to difficulty of modeling three 

component complex signals. In in-vivo experiments, magnitude and complex model-based 

MWF were compared to rPCA-MWF. In this study, a total 30 echoes were used with the 

last echo time of 31.81 ms. Note that multi-component magnitude model-based MWF using 

https://github.com/Yonsei-MILab
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rNNLS does not provide adequate results due to the limited number of echoes. 

 

4.3.2 Simulations 

Numerical simulations were performed on an analytic phantom to compare the 

performance of MWF estimation between model-based MWF and rPCA-MWF for various 

situations. An analytic phantom composed of 24 region-of-interests (ROI) was designed. 

Each ROI had a size of 8x8 voxels, containing two water pools (i.e., slowly-decaying 

component (T2,slow
*) and fast-decaying component (T2,fast

*)) with various T2
* and MWF 

(Figure 4.3a). The index of each ROI was set to 1-6, 7-12, 13-18 and 19-24 for each column. 

For ROI 1-12, T2,slow
* and T2,fast

* were set to 60ms and 10ms respectively and MWF varied 

from 2% to 24 % with step size 2%. For ROI 13-18, T2,slow
* varied from 40ms to 90ms with 

step size 10ms and T2,S
* was set to 10ms. For ROI 19-24, T2,slow

* was set to 60ms and T2,fast
* 

varied from 5ms to 15ms with step size 2ms. The MWF of ROI 13-24 were set to 10%. 

Each parameter was set based on the literature values of the myelin and axonal/extracellular 

water component of healthy white matter at 3T [77]. 

In order to reflect a more realistic biological tissue characteristics representing a 

continuous distribution for each water pool, the aforementioned T2
* components of each 

ROI were modeled to have a Gaussian distribution centered at each T2
*, with a standard 

deviation of 10% of each T2
* [95]. The first TE and echo spacing was set to 2ms and 1ms 

respectively and 30 echoes were assumed to be sampled [96]. 
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White Gaussian noise was added so that the SNR of the magnitude image at the first TE 

varied from 240 to 60 with a step size of 20. A series of Monte-Carlo simulations were 

performed with 100 repetitions for each case. The error of the estimated MWF map was 

evaluated with RMSE and the standard deviation of each ROI was calculated. 

The effects of the number of echoes on the rPCA-MWF was studied using simulated 

data. The true and estimated MWF was calculated assuming different number of echoes 

collected (from 12 to 32 with step size of 4). Subsequently, a linear regression of the 

calculated result was performed. By doing this, the slope of the linear regression provided 

information about the overall underestimation and the intercept of the regression provided 

the overall bias information.  

 

4.3.3 In-vivo experiment 

All MR imaging experiments were performed on 3 Tesla clinical scanners (Tim 

Trio/Skyra, Siemens, Erlangen, Germany or Signa, General Electric Company, Milwaukee, 

WI). All examination was performed with approval from the institution's ethical review 

board and all subjects provided signed, informed consent prior to participation. A 12-

channel phased-array head coil and a 32-channel head coil were used for data reception in 

Siemens scanner and GE scanner respectively. 

The 3D mGRE imaging parameters were FOV = 256×256×80mm3, spatial resolution = 

2×2×2 mm3, TR = 46 ms, TE1 = 1.65 ms, ΔTE = 1.04 ms, # of echoes = 30, flip-angle = 
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20°, bandwidth = 1560 Hz/pixel and total scan time = 3min 55sec. For anatomical reference, 

T1-weighted sagittal 3D MPRAGE (1.0 mm isotropic) was used for all subjects. 

Data were collected from 10 subjects. Subjects 1~7 were healthy volunteers (age range: 

25-35) with no documented disease in the brain. Subject 8, 9 and 10 were patients with 

pathologically confirmed disease by a radiologist; dementia (female, age 70), non-amnestic 

mild cognitive impairment (MCI) disease (female, age 81) and x-linked 

adrenoleukodystrophy (X-ALD) disease, respectively. Note that all the experiments were 

performed on Siemens scanner except for subject 10. The experiment for subject 10 with 

X-ALD disease was performed on GE scanner in order to acquire another quantitative 

myelin water imaging method equipped on scanner; quantitative inhomogeneous 

magnetization transfer imaging [97].  

For subject 10 with X-ALD, parameters of mGRE imaging were modified due to 

different scanner conditions: FOV=256×256×100mm3, spatial resolution=1.6×1.6×2.0 

mm3, TR = 60 ms, TE1 = 1.4 ms, ΔTE = 2.1 ms, # of echoes = 16, flip-angle = 25° and 

scan time = 8min. For anatomical reference, T1-weighted sagittal image was acquired using 

3D FSPGR. Furthermore, a inhomogeneous magnetization transfer (ihMT) imaging 

protocol [97] was added with the following parameters: 3D SPGR sequence, spatial 

resolution=3×3×3 mm3, TR = 10.2 ms, TE = 2 ms, flip-angle = 8° and scan time = 5min 

34sec. After data acquisition, quantitative ihMT (qihMT) map was estimated by taking the 

difference of the longitudinal relaxation rates between two MT states, dual frequency and 

single frequency, by using a prototype image processing software provided by GE [97]. 
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The reproducibility was calculated using Pearson’s correlation coefficient for white 

matter region. First, to evaluate the reproducibility of the MWF maps, subjects 1~7 were 

scanned twice and a correlation between the two scans was calculated. Student's t-test was 

performed to evaluate the statistical significance of model-free MWF map against model-

based MWF maps. The significance level was set to 0.05. Second, to evaluate the noise 

sensitivity of the technique, additional white gaussian noise was added to mGRE data from 

subject 7. The MWF map from original mGRE images was used as a reference. The SNR 

of the reference mGRE image at the first echo was 160 and the noise corrupted images was 

from 60 to 140 with step size 20. The correlation between reference and noise additive 

cases was calculated. 

 

4.4 Results 

4.4.1 Simulations 

The simulation result of the MWF mapping is shown in Figure 4.3. The noise of MWF 

map was reduced in rPCA-MWF compared to model-based MWF (Figure 4.3b and 4.3f). 

The standard deviation (STD) of the estimated MWF values from each ROI was reduced 

by more than 40 % in rPCA-MWF compared to model-based MWF (Figure 4.3c-4.3e and 

4.3g-4.3i). For the ROIs with varying MWF (i.e., #1~12), the correlation coefficient of the 

estimated MWF for true MWF was 20% higher in rPCA-MWF than model-based MWF. 
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However, the linear regression of the estimated MWF showed underestimation of 15% for 

rPCA-MWF and model-based MWF (Figure 4.3c and 4.3g). Meanwhile, for the ROIs with 

varying T2,slow
* and T2,fast

* (i.e., ROI #13~24),  the accuracy of the estimated MWF was 

more sensitive to variations in T2,fast
* than to T2,slow

*  (Figure 4.3d-4.3e and 4.3h-4.3i). 

The noise sensitivity of estimated MWF values from six representative ROIs is shown 

in Figure 4.4. The six representative ROIs were selected from regions where true MWF, 

T2,slow
* and T2,fast

* have minimum and maximum values (Figure 4.3a). The RMSE between 

true MWF map and estimated MWF map was reduced by more than 40% in rPCA-MWF 

compared to model-based MWF (Figure 4.4a). The STD of rPCA-MWF was invariant 

against true MWF, T2,slow
* and T2,fast

*. However, the STD of model-based MWF increased 

as true MWF increased (Figure 4.4b). This shows the sensitivity of model-based method 

against true MWF. For all range of SNR, rPCA-MWF showed reduced RMSE and STD 

compared to model-based MWF, which supports robustness against noise of proposed 

method. 
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Figure 4.3. Numerical simulation of the MWF mapping for various T2,slow
*, T2,fast

*, and MWF. (a) Ground truth of the MWF, 

T2,slow
*, T2,fast

*. The MWF map and ROI analysis using (b-e) magnitude model-based MWF and (f-i) rPCA-MWF. Each 

column of ground truth indicates the ROI index 1~6, 7~12, 13~18 and 19~24 respectively. 
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Figure 4.4. Noise sensitivity of the MWF map in simulation. (a) RMSE according to SNR. 

The STD of each ROI for (b) varying MWF (c) varying T2,slow
* and (c) varying T2,fast

*. Note 

that only ROI #1,12,13,18,19 and 24 are represented here. 

 

The effect of the number of echoes on the rPCA-MWF is shown in Figure 4.5. For both 

model-based MWF and rPCA-MWF, the overall underestimation gradually decreased as 

the number of echoes increased (Figure 4.5a). Meanwhile, the overall bias decreased as the 

number of echoes increased for model-based MWF while it was consistent for rPCA-MWF 

(Figure 4.5b). The number of echoes collected was determined to be 30 (i.e., the last echo 

of 32 ms) since the underestimation tended to slow down at this value while maintaining 

scan time. Additionally, the accuracy of estimated MWF values from four representative 
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ROIs is shown in Figure 4.6. The four representative ROIs were selected from regions 

where true T2,slow
* and T2,fast

* have minimum and maximum values. The accuracy of rPCA-

MWF outperformed for varying T2,slow
*.  

Figure 4.5. Effect of number of echoes on the MWF using simulated data. (a) The slope 

and (b) the intercept following linear regression of Figure 4.3c and 4.3g for varying number 

of echoes. Note that the slope represents overall underestimation and the intercept 

represents overall bias. 

Figure 4.6. Effect of number of echoes in simulation. Estimated MWF for varying (a) 

T2,slow
* (ROI #13 and #18) and (b) T2,fast

* (ROI #19 and #24). Note that true MWF is 10%. 
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4.4.2 In-vivo experiments 

Component-wise analysis for the decomposed source signal is shown in Figure 4.7. The 

decomposed mGRE data matrix using proposed rPCA-MWF shows three components; 𝐋1, 

𝐋2 and 𝐒. The 𝐋1 component represents slow-varying signals, while the 𝐋2 component 

represents signals appearing only at early echoes. The R2
* maps of 𝐌, 𝐋1 and 𝐋2 were 

reconstructed by mono-exponential fitting and the histogram of T2* measurements were 

plotted after removing the skull region by using FSL BET [98] (Figure 4.7b and 4.7c). The 

mean T2
* values were measured at 20.6ms, 52.6ms and 9.7ms while the mean amplitude 

was 0.91, 0.84 and 0.08, respectively. The T2
* measurements, especially short T2

* value, 

corresponded well to the literature values of GRE-MWI reported to being 6~15 ms [62, 66, 

78]. The 𝐒  component represented residual signals including noise, and B0–oriented 

artifact (frontal lobe, yellow arrow in Figure 4.7a). Other tissue signals such as 

subcutaneous fat is not of interest in this study.  
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Figure 4.7. Component-wise analysis of rPCA-MWF (subject 1). (a) Spatial distribution and temporal evolution of original 

mGRE and each decomposed component for five representative echo times. Note that the abnormal signal decay at frontal 

lobe of 𝐌 is decomposed to 𝐒 component (yellow arrow). (b) R2
* map estimated by mono-exponential fitting of 𝐌, 𝐋1 

and 𝐋2 signals. (c) Histogram of T2
* from each R2

* map. Note that the T2
* of 𝐋1 and 𝐋2 are not biased to a single T2

* but 

represent various T2
*.
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Representative MWF maps using magnitude model-based, complex model-based and 

rPCA technique are shown in Figure 4.8. A clearer visualization of the white matter area is 

noted for rPCA-MWF and corresponds well to the details of the MPRAGE images. Note 

that the magnitude model-based MWF and rPCA-MWF shows overestimation in the globus 

pallidus region compared to complex model-based MWF (first slice in Figure 4.8).  

 

Figure 4.8. Six representative slices from healthy volunteer (subject 1). (a) MPRAGE, (b) 

magnitude three pool model-based MWF, (c) complex three pool model-based MWF and 

(d) rPCA-MWF.  
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Reproducibility results for the 7 subjects is given in Table 4.2. Correlation coefficients 

between two repeated scans are largest in the rPCA-MWF map with 0.925, which 

corresponds to an improvement of more than 10% compared to model-based MWF map 

(p<0.05). Also, the STD was smallest for the rPCA-MWF. In Figure 4.9, reproducibility 

analysis with respect to noise is shown. As more noise is present, the model-based MWF 

maps show reduced reproducibility with correlation coefficient under 0.8. The rPCA-MWF 

shows robustness with correlation coefficient over 0.9 even at SNR of 60. The discrete 

variation of rPCA-MWF resulted from the mis-estimation of L2 after SNR of 80.   

Table 4.2. Reproducibility analysis of the MWF map for 7 healthy volunteers 

Figure 4.9. The reproducibility of the MWF map as noise corruption. 𝐫𝟐 is Pearson’s 

correlation coefficient between reference MWF map and noise additive MWF map. 
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Cases when artifacts were present are shown in Figure 4.10. Subject 9, 8 and 6 showed 

B0 inhomogeneity, motion artifact and zipper artifact corrupted cases respectively. In 

Figure 4. 10a, temporal signal evolution of mGRE deviated from the exponential decay at 

the frontal lobe, and the complex model-based MWF image presented abnormal high 

values. The rPCA-MWF removed this to the 𝐒 component. In Figure 4.10b, the aliasing 

patterns in mGRE image are separated to the S component and rPCA-MWF shows a more 

uniform distribution than model-based MWF. In Figure 4.10c, a zipper artifact in mGRE 

image is shown leading to abnormal overestimation of MWF in model-based MWF. The 

rPCA-MWF removed this to the S component. For all cases, the rPCA-MWF shows a 

clearer image of the MWF. In Figure 4.11, images from other slices and comparison with 

magnitude model-based MWF for each of these cases are provided. 
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Figure 4.10. Single representative slice when imaging artifacts are present. (a) B0 

inhomogeneity (subject 9), (b) motion (subject 8) and (c) zipper (subject 6) artifacts. The 

rPCA-MWF shows reduced artefactual images. Note that the imaging artifacts depicted in 

mGRE images and complex model-based MWF are separated to the S component. 
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Figure 4.11. Three representative slices when imaging artifacts are present. (a) B0 inhomogeneity (subject 9), (b) motion 

(subject 8) and (c) zipper (subject 6) artifacts. The rPCA-MWF shows reduced artefactual images. Note that the imaging 
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Results from a patient with demyelination (subject 10) is provided in Figure 4.12.  

Image from the MT scan is also shown for comparison. The rPCA-MWF map shows 

decreased MWF at the genu of corpus callosum which is in agree with the MT scan (green 

arrow). The complex model-based MWF map, however, showed unclear representation.  

 

Figure 4.12. Patient exam results for a single slice (subject 10). (a) T1 weighted image, (b) 

Complex model-based MWF, (c) rPCA-MWF (d) qihMT image and (e) the magnified 

image for demyelinated region. Note that the demyelination (green arrow at genu) is 

observed in rPCA-MWF, which is in agreement with the anatomic and qihMT image. 
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Figure 4.13. Effect of B0 inhomogeneity on S component. The mGRE signal, low-rank 

signal and sparse signal at B0 inhomogeneous and homogeneous region are plotted for 

subject 9. Note that the oscillating signal of S component was amplified for frontal region. 

Figure 4.14. Six representative slices from healthy volunteer (subject 1). (a) MPRAGE, (b) 

rNNLS-MWF and (c) rPCA-MWF. The regularization parameters for rNNLS-MWF were 

set the same as in reference [64, 99]. Note that the rNNLS-MWF was reconstructed from 

current acquisition protocol (i.e., using 30 echoes with the last echo time of 31.81 ms) and 

does not provide a satisfactory result. 
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Figure 4.15. Numerical simulation of the MWF mapping for various T2,slow
*, T2,fast

*, and MWF. (a) Ground truth of the MWF, 

T2,slow
*, and T2,fast

*. The MWF map and ROI analysis using (b-e) rNNLS-MWF and (f-i) rPCA-MWF. Each column of ground 

truth indicates the ROI index 1~6, 7~12, 13~18 and 19~24 respectively. (j) Noise sensitivity of the MWF map. The 

regularization parameters were set the same as in reference [5, 44]. Note that the number of echoes was assumed to be 64.
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Figure 4.16. The representative 𝑇2
∗ of rNNLS (purple), magnitude model-based MWF 

(blue) and rPCA-MWF (red) when true MWF (black) is 10% and SNR is 120 (ROI #5 in 

Figure 4.3). For each method, sum of amplitude of all 𝑇2
∗ components was normalized to 

1. Note that the representative 𝑇2
∗ of rPCA-MWF is corresponded to the logarithmic center 

of spectral distribution of true 𝑇2
∗. 

 

4.5 Discussion 

In this study, I propose a data-driven source separation algorithm to map MWF from 

mGRE data as an alternative to conventional MWF mapping methods. By optimizing the 

standard rPCA algorithm for MWF mapping, the separation of two unit-rank components 

and sparse component allowed robust MWF mapping as well as differentiating myelin 

water and axonal/extracellular water signals. 

The incorporation of NMF and hankelization allowed preservation of the physical 
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characteristics of tissue relaxation without a need for numerical modeling. First, NMF only 

allows additive combinations of signal sources by imposing non-negative constraint. This 

leads to the separated source signals to be represented in a more meaningful and 

interpretable feature [81]. Second, hankelization encourages exponential relaxation decays 

[86, 100]. The enforcement of the unit-rankness of each mono-exponential decay promotes 

the differentiation of axonal/extracellular water and myelin water signal. 

One of the major advantages of rPCA-MWF is artifact robustness. In conventional GRE-

MWI, the procedure to solve model-based MWF is a nonlinear regression, fitting the 

parameters of the model that minimizes least squares residuals. The deviations in the signal 

derived from artifact misfit the fitting parameters of the model. In proposed rPCA-MWF, 

by model-free source separation, the deviated signal due to artifact representing non-

exponential decay are decomposed to the 𝐒 component. Consequently, the L1 and L2 

components are free from out-of-model signal sources and supports the improvement of 

the reproducibility in rPCA-MWF. In particular, the S component was amplified with 

oscillatory signal for B0 inhomogeneity dominant voxel (Figure 4.13). Although there was 

no numerical field inhomogeneity correction method implemented, the rPCA-MWF 

effectively separated non-exponentially decaying field inhomogeneity artifacts. 

Another main advantage of rPCA-MWF is the noise robustness. In solving the objective 

function, the low rankness is enforced by singular value thresholding (SVT). The noisy 

subspace which yield small singular values are thresholded and the L1 and L2 components 

are represented by subspace with large singular values. Consequently, the rPCA-MWF 
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mapped using the L1 and L2 components achieves noise robustness. This supports the 

improvement of the reproducibility against noise in rPCA-MWF.  

The amount of noise robustness of the L1 and L2 components is determined by the 

singular values of each component. As myelin water has lower signal than 

axonal/extracellular water, it is more susceptible to noise. Consequently, the robustness to 

noise was disrupted earlier for L2 (i.e., myelin water component) than L1 which results in 

mis-estimation of L2. The regularization parameters of rPCA-MWF were empirically 

determined to be robust for SNR ~100 typical of in-vivo mGRE acquisition, however it 

could be further adjusted for lower SNR. 

Another benefit of rPCA-MWF is the range of echo time. rPCA-MWF stabilized using 

30 echoes with the last echo of 32 ms. Meanwhile, a typical regularized non-negative least 

squares MWF (i.e., rNNLS-MWF) requires more than 64 echoes (i.e., the last echo being 

longer than the slowly-decaying T2* component) [64, 99]. Under the same hardware 

performances, TR of at least 80 ms is required to acquire 64 echoes. Consequently, the total 

scan time for rNNLS-MWF using 64 echoes is estimated to be 6 min 50 sec, which is 1.7 

times longer than the scan time of this study. To avoid the increase of scan time and 

maintain a reasonable scan time for clinical application, a total of 30 echoes were acquired. 

In addition, it has been reported that mGRE-MWF can robustly estimate MWF with this 

decreased number of [63, 79]. As rNNLS-MWF does not perform well under the given 

acquisition protocol due to lack of echo signals, it was not thoroughly compared in this 

study (Figure 4.14 shows a demonstrative comparison of rNNLS-MWF and rPCA-MWF 
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under the current acquisition protocol). In addition, a simulation study using numerical 

phantom shows that the RMSE for rPCA-MWF is lower than rNNLS-MWF, even 

assuming 64 echo acquisition (Figure 4.15).  

An additional benefit of the rPCA-MWF is the processing time. In our implementations, 

the complex model-based fitting and magnitude model-based fitting method required 69 

secs and 31 secs per slice, respectively. The rPCA-MWF took 7.5 secs per slice and could 

cover whole 3D volume in under 5 mins. 

Compared to multi-component model-based MWF, rPCA-MWF has two representative 

T2
* for each voxel. The axonal water and extracellular water signals have T2

* difference less 

than 20 ms at 7T, and therefore are difficult to differentiate [101]. In rPCA-MWF, these 

signals are represented as a single L1 component. Given a distribution of T2
* values, the 

representative T2
* of L1 and L2 corresponded to the logarithmic center of each distributed 

water pool (Figure 4.16) and to the literature T2
* distribution in vivo (Figure 4.7b). This 

supports that the separated L1 and L2 represent intra-/extracellular water and myelin water 

component respectively. 

A potential limitation of the current rPCA-MWF is that only magnitude information has 

been used and each separated component is based on the magnitude signal. The 

susceptibility differences along fiber orientation of mGRE data perturbate the effective 

resonant frequencies of the water compartments [102]. While considering frequency offsets 

could improve the GRE-MWI [67, 79], the lack of non-negativity and unit rankness of 
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complex-valued signal made it difficult to implement a complex-value based rPCA-MWF. 

The absence of consideration for these orientational dependencies resulted in 

overestimation in iron rich regions (e.g., globus pallidus in deep gray matter of Figure 4.8) 

[103, 104]. Extending rPCA-MWF to handle complex values in a different way is a future 

study. 
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Chapter 5 

Robust Deep Autoencoder for Myelin Water 

Fraction Mapping using Multi-echo Gradient-

echo Image 

 

5.1 Motivation 

5.1.1 Overview 

In conventional myelin Myelin water imaging (MWI) is a promising biomarker that 

imaging demyelinating diseases such as multiple sclerosis [105-107], neuromyelitis optica 

[108, 109], dementia [110] and stroke [111]. In conventional MWI, multi-echo spin-echo 

(mSE) images are fitted to a numerical model in order to estimate multiple T2 components 

[59, 60]. Recently, multi-echo gradient-echo (mGRE) images have been implemented to 

estimate multiple T2* components, and it has been demonstrated that T2* signal has 

multiple water components [61-63, 68, 78, 79, 99]. Compared to mSE-MWI, mGRE-MWI 

has promising advantages such as low specific absorption rate, fast scan time, and 

insensitivity to B1 inhomogeneity [61]. However, anomaly sources such as physiological 
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noise and image artifacts disrupted the mGRE images and degraded the mGRE-MWI [66, 

67, 112]. 

In previous studies, linear dimensionality reduction (LDR) techniques have been 

suggested to extract low dimensional features of MR signal [69, 71, 72, 74, 113-115]. By 

representing the high-dimensional dataset with intrinsic dimensionality (i.e., the minimum 

number of variables needed), the features which do not reside in the low dimensional 

subspace were excluded. The application of LDR varies including denoising in DWI [71, 

114], denoising in fMRI [69], background signal removal in dynamic MRI [72] and 

denoising in MWI [113, 115], and artifact removal [74, 115, 116]. In particular, it has been 

validated that the mGRE images can be represented in linear low dimensional subspace by 

using robust principal component analysis (rPCA) [9, 117]. LDR in mGRE shows 

robustness for noise and artifacts, however, it cannot separate three water components 

corresponding to mGRE sources (i.e., myelin, axonal and intracellular water) in the 

complex-valued domain due to lack of orthogonality. 

Recently, nonlinear dimensionality reduction (NLDR) techniques using deep neural 

networks have been developed to extract non-linear low dimensional features from the high 

dimensional dataset [7, 12, 118, 119]. An autoencoder, consisting of an encoder which 

maps the signal to a latent subspace and the decoder which maps the latent subspace to the 

signal [120, 121], extracts low dimensional feature at the latent layer (i.e., bottleneck layer). 

It has been suggested in MRI for compressed sensing reconstruction [122, 123], denoising 

dynamic contrast-enhanced (DCE) image [124], and denoising magnetic resonance 
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spectroscopic imaging (MRSI) [125]. 

 I propose in this work an NLDR algorithm to estimate complex-valued low 

dimensional T2* components that captures the three water sources of mGRE signal. The 

proposed technique separates spatio-temporal mGRE images into three low dimensional 

features (referred to as 𝐋1 , 𝐋2 , and 𝐋3 ) and sparse feature (referred to as 𝐒) for a 

complex-valued signal. Then, MWF map is suggested as the ratio of 𝐋1 to sum of 𝐋1, 𝐋2 

and 𝐋3. I have demonstrated the proposed technique in healthy volunteers and clinical 

patients. 

The outline of this Chapter is as follows. In Chapter 5.1.2-5.1.4, I give the previous study 

for mGRE-MWI using non-linear least squares algorithm (referred here as NLLS-MWF) 

and linear dimensionality reduction algorithm (referred here as LDR-MWF). Chapter 5.2 

describes the proposed non-linear dimensionality reduction algorithm which is optimized 

for MWF mapping (referred here as NLDR-MWF). Chapter 5.3 and 5.4 present the 

methods and results of the simulation and in-vivo experiments. Finally, Chapter 5.5 

provides the discussion and conclusion. 

5.1.2 Complex model-based MWF (NLLS-MWF) 

The voxel-wise 𝑇2
∗ decaying signal, 𝑠(𝑡), is fitted to the complex three-component 

model as follows [63]: 

𝑠(𝑡) = (𝐴𝑚𝑦𝑒
−(1/𝑇2,𝑒𝑥

∗ +𝑖2𝜋∆𝑓𝑏𝑔+𝑚𝑦)𝑡 + 𝐴𝑎𝑥𝑒
−(1/𝑇2,𝑒𝑥

∗ +𝑖2𝜋∆𝑓𝑏𝑔+𝑎𝑥)𝑡 
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          +𝐴𝑒𝑥𝑒
−(1/𝑇2,𝑒𝑥

∗ +𝑖2𝜋∆𝑓𝑏𝑔+𝑒𝑥)𝑡)𝑒−𝑖𝜑0             (5.1) 

where 𝐴𝑚𝑦, 𝐴𝑎𝑥  and 𝐴𝑒𝑥  are the amplitude of the three water component, 

𝑇2,𝑚𝑦
∗ , 𝑇2,𝑎𝑥

∗  and 𝑇2,𝑒𝑥
∗  are 𝑇2

∗ value of the three water component, ∆𝑓𝑏𝑔+𝑚𝑦, ∆𝑓𝑏𝑔+𝑎𝑥 

and  ∆𝑓𝑏𝑔+𝑒𝑥  are the frequency offset of the three water component plus the sum of 

background frequency offset, 𝜑0 is the 𝐵1
+ phase offset. The parameters are estimated 

by minimizing the nonlinear least-squares errors using an iterative nonlinear curve-fitting 

algorithm [63, 68, 79]. Then, MWF is estimated as the ratio of the myelin water component 

to the total water component (i.e., 𝐴𝑚𝑦/(𝐴𝑚𝑦 + 𝐴𝑎𝑥 + 𝐴𝑒𝑥 )). The initial values and 

bounds of the fitted parameters are set the same as in [79]. 

5.1.3 Linear Dimensionality Reduction for mGRE images (LDR-

MWF) 

I denote matrices by boldface uppercase letters, operators by lightface uppercase letters, 

vectors by boldface lowercase italics, constants by lightface uppercase italics. ℂ, ℝ and 

ℝ+ represent a set of complex, real and positive-real values, respectively. 

In advance of implementing LDR, the mGRE data 𝑚(∙) is represented to the spatio-

temporal Casorati matrix as follows: 

𝐌(𝒓, 𝑡) =

[
 
 
 
𝑚(𝑟1, 𝑡1) 𝑚(𝑟1, 𝑡2)
𝑚(𝑟2, 𝑡1) 𝑚(𝑟2, 𝑡2)

⋯
⋯

𝑚(𝑟1, 𝑡𝑁𝑡)

𝑚(𝑟2, 𝑡𝑁𝑡)

⋮                 ⋮ ⋱ ⋮
𝑚(𝑟𝑁𝑠 , 𝑡1) 𝑚(𝑟𝑁𝑠 , 𝑡2) ⋯ 𝑚(𝑟𝑁𝑠 , 𝑡𝑁𝑡)]

 
 
 

          (5.2) 
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where 𝐌 ∈ ℝ𝑁𝑠×𝑁𝑡, 𝑁𝑠 is the number of samples (i.e., number of voxels) and 𝑁𝑡 is 

the number of contrasts (i.e., number of echoes). The LDR-MWF algorithm separates the 

spatio-temporal mGRE data into two rank-1 components (i.e., fast-decaying (𝐋1 ) and 

slowly-decaying (𝐋2)) and sparse component (i.e., residual artifact signal (S)) by solving 

an optimization problem as follows [115]: 

min
𝐋1,𝐋2,𝐒

‖𝐌−∑ 𝐋i
2
i=1 − 𝐒‖

2

2
+ ∑ μi‖ℋ(𝐋i)‖∗

2
i=1 + ρ‖Ψ(𝐒)‖1        (5.3) 

where 𝐋1, 𝐋2, 𝐒 ∈ ℝ+
𝑁𝑠×𝑁𝑡 , ‖∙‖∗ denotes the nuclear norm, ‖∙‖1  denotes the ℓ1 -

norm, ℋ(∙) denotes temporal hankelization operator, Ψ(∙) denotes temporal sparsifying 

operator (1D FFT in the echo domain). 𝜇1, 𝜇2 and 𝜌 denote regularization parameters for 

low-rankness and sparsity respectively. Equation (5.3) is solved using the alternating 

direction method of multipliers (ADMM) Goldstein and Osher [93]. The MWF can be 

calculated as the ratio of a fast-decaying rank-1 component to the total rank-1 component 

at TE1. The local patch extraction operator from the original algorithm was omitted for 

simplification. 

Compared to NLLS-MWF, LDR-MWF provided the robust estimation of MWF map by 

separating low dimensional feature (i.e., exponential decaying) and sparse feature (i.e., 

artifacts) [115]. However, even though additional operators for enforcing the low 

dimensionality (e.g., nonnegative matrix factorization (NMF) and hankelization), it was 

insufficient to separate three low-dimensional features which correspond to three water 

components (i.e., myelin, extra and axonal water). Consequently, LDR-MWF extracted 
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only two rank-1 components which correspond to slowly-decaying (i.e., intra-/extra-

cellular water signal) and fast-decaying signal (i.e., myelin water signal) respectively. Also, 

each low dimensional feature of LDR-MWF was constrained on the magnitude domain, 

and complex attribute of low dimensional features could not be considered. 

5.1.4 Deep Autoencoder 

A deep autoencoder (DAE) is a feed-forward neural network with fully connected 

stacked encoding and decoding layers (Figure 5.1.a). The network is trained to minimize 

the mean squared error between the input and output of the network. The training allows 

the bottleneck layer to provide a low dimensional representation that preserves the data 

feature of the entire training dataset [7, 12]. 

Autoencoder is consists of two-part: encoder and decoder. The encoder maps the signal 

to a latent subspace and the decoder which maps the latent subspace to the signal as [120, 

121]: 

ℎ = ℰ(𝑚𝑛𝑠(𝑡); θℰ)                      (5.4a) 

𝑚̂ = 𝒟(ℎ; θ𝒟) = 𝒟(ℰ(𝑚𝑛𝑠(𝑡); θℰ); θ𝒟)             (5.4b) 

where 𝑛𝑠 denotes an index of spatial instances, 𝑚𝑛𝑠(𝑡) denotes temporal signal at 

spatial pixel 𝑛𝑠  (i.e., 𝑚(𝑟𝑛𝑠, 𝑡)), ℎ  denotes latent feature, ℰ  and 𝒟  denote encoder 

and decoder mapping respectively, θℰ  and θ𝒟  denote weights and biases of entire 

multilayers for encoder and decoder respectively. Training is finding θℰ and θ𝒟 while 
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minimizing RMSE error as: 

{θ̂ℰ , θ̂𝒟} = argmin
θℰ ,θ𝒟

1

𝑁𝑠
∑  ‖𝑚𝑛𝑠(𝑡) − 𝒟(ℰ(𝑚𝑛𝑠(𝑡); θℰ); θ𝒟)‖2

2𝑁𝑠
𝑛𝑠=1        (5.5) 

where 𝑁𝑠 denotes the number of training samples. Note that the voxel-wise multi-echo 

signals are feed into the network. 

 

5.2 Proposed Methods 

5.2.1 Pre-trained model for initialization 

Recognizing that mGRE signal is observed as multiple exponential T2* decaying signals 

in Eq. 5.1 [63, 79], an initialization strategy to estimate each mono-exponential T2* 

decaying signals using a fully connected encoder was proposed. In LDR-MWF, a model-

free initialization approach using non-negative double singular value decomposition 

(NNDSVD) was unable to distinguish axonal and extracellular water signals. As an 

alternative to NNDSVD, each water component estimation network was trained using 

complex three-component model. Several studies showed feasibility for using a model-

based synthesized signal for training [125-128]. 

The input signal was generated as in Eq. 5.1 and the label of each source signal, 𝑠𝑖, was 

generated as:  

𝑠𝑖(𝑡) = 𝐴𝑖𝑒
−(1/𝑇2,𝑖

∗ +𝑖2𝜋∆𝑓𝑖)𝑡                    (5.6) 
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where 𝑖 denotes the index of each water component. The training dataset was generated 

by simulating 𝑠𝑖(𝑡)  based on empirical distribution. The parameters for each mono-

exponential signal was set based on empirical data as [126]: 𝐴1 = (10, 2), 𝐴2 = (60, 10), 

𝐴3 = (30, 6), 𝑇2,1
∗ = (10, 2), 𝑇2,2

∗ = (72, 10), 𝑇2,3
∗ = (48, 6), ∆𝑓1 = (−10, 20), ∆𝑓2 =

(−10, 10), ∆𝑓3 = (0,0).  

The training is carried out to minimize RMSE between input and label and is represented 

as: 

argmin
θ𝑖

 ‖𝑠𝑖(𝑡) − 𝑓(𝑠(𝑡); θ𝑖)‖2
2    (𝑓𝑜𝑟 𝑖 = 1,2,3)            (5.7) 

where θ𝑖 denotes the parameterized weights and bias for all layers. The network had 

2𝑁𝑡 neurons in the input layer and the output layer. Between the input and output layers, 

5 hidden layers were constructed with 500 fully connected neurons, respectively. A 

rectified linear unit (ReLU) with 0.2 was used as a nonlinear activation function and Adam 

optimizer with learning rate of 1e-4 was used. 

The trained parameters of each water component estimation network were then 

integrated into the initialization step of the proposed NLDR-MWF algorithm. 

5.2.2 Algorithm of the proposed method (NLDR-MWF) 

The original rDAE separates the signal sources into a low-dimensional component, 𝐋, 

and a sparse component, 𝐒, by solving the constrained optimization problem as [13]: 
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min
θℰ ,θ𝒟 ,𝐒

1

𝑁𝑠
∑ ‖𝐋(𝑟𝑛𝑠, 𝑡) − 𝒟(ℰ(𝐋(𝑟𝑛𝑠, 𝑡); θℰ); θ𝒟)‖2
𝑁𝑠
𝑛𝑠=1 + ρ‖Ψ(𝐒)‖1  

s. t.  𝐌 − 𝐋 − 𝐒 = 0                        (5.8) 

where 𝐋(𝑟𝑛𝑠, 𝑡) denotes temporal signal at spatial pixel 𝑛𝑠. Note that the input feed 

into autoencoder pixel-wisely and the constraint is regularized for entire pixels. Equation 

(5.8) is solved by using the concept of alternating direction method of multipliers (ADMM) 

[11, 93] and Dykstra’s alternating projection method [14]. 

In this study, I present optimized NLDR method that separates three low-dimensional 

sources and a sparse source from mGRE images. With the guide of model based T2* source 

separation which was mentioned in Chapter 5.2.1, a modified rDAE to separate three 

distinct sources from mGRE data is presented. The LDR-MWF separates the mGRE signal 

sources into two low-rank component and a sparse component. In this study, the signal 

source of mGRE data was separated into three low-dimensional signals and sparse signal. 

The optimization problem is defined as:  

min
θℰ,i,θ𝒟,i,𝐒

∑
1

𝑁𝑠
∑ ‖𝐋𝑖(𝑟𝑛𝑠, 𝑡) − 𝒟(ℰ(𝐋𝑖(𝑟𝑛𝑠, 𝑡); θℰ,i); θ𝒟,i)‖2
𝑁𝑠
𝑛𝑠=1

3
i=1 + ρ‖Ψ(𝐒)‖1  

s. t.  𝐌 − ∑ 𝐋i
3
i=1 − 𝐒 = 0                      (5.9) 

where ρ denotes regularization parameters for sparsity. ℰ and 𝒟 denote encoding and 

decoding layers with a dimension of 2𝑁𝑡 − 30 − 5 − 30 − 2𝑁𝑡 . ReLU activation 

functions were used in the hidden layers except for the last layer. The following steps were 

performed iteratively in our proposed algorithm: 
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Update initialized low-dimensional components by projecting on pre-trained model 𝑓 

as: 

𝐋1
(k) = 𝑓(𝐌− 𝐒(k), θ1)                   (5.10a) 

𝐋2
(k) = 𝑓(𝐌− 𝐒(k), θ2)                   (5.10b) 

𝐋3
(k) = 𝑓(𝐌− 𝐒(k), θ3)                   (5.10c) 

where θ1, θ2, and θ3 denote all the weights and bias of pre-trained model in Chapter 

5.2.1. Note that these parameters are fixed during solving optimization problem. 

Update DAE model parameters by minimizing the RMSE between the input and the 

output signals of each low dimensional component as: 

{θℰ,1
(k), θ𝒟,1

(k)} = argmin
θℰ,1,θ𝒟,1 

1

𝑁𝑠
∑ ‖𝐋1

(k)(𝑟𝑛𝑠, 𝑡) − 𝒟(ℰ(𝐋1
(k)(𝑟𝑛𝑠, 𝑡); θℰ,1); θ𝒟,1)‖2

𝑁𝑠
𝑛𝑠=1   

(5.11a) 

{θℰ,2
(k), θ𝒟,2

(k)} = argmin
θℰ,2,θ𝒟,2 

1

𝑁𝑠
∑ ‖𝐋1

(k)(𝑟𝑛𝑠, 𝑡) −  𝒟(ℰ(𝐋1
(k)(𝑟𝑛𝑠, 𝑡); θℰ,2); θ𝒟,2)‖2

𝑁𝑠
𝑛𝑠=1   

(5.11b) 

{θℰ,3
(k), θ𝒟,3

(k)} = argmin
θℰ,3,θ𝒟,3 

1

𝑁𝑠
∑ ‖𝐋1

(k)(𝑟𝑛𝑠, 𝑡) − 𝒟(ℰ(𝐋1
(k)(𝑟𝑛𝑠, 𝑡); θℰ,3); θ𝒟,3)‖2

𝑁𝑠
𝑛𝑠=1   

(5.11c) 

Update low dimensional components using DAE model parameters in previous step, 
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{θℰ,𝑖
(𝑘), θ𝒟,𝑖

(k)}
𝑖=1

3
, as: 

𝐋1
(k+1)  =  𝒟(ℰ(𝐋1

(k); θℰ,1
(k)); θ𝒟,1

(k))            (5.12a) 

𝐋𝟐
(k+1)  =  𝒟(ℰ(𝐋𝟐

(k); θℰ,2
(k)); θ𝒟,2

(k))            (5.12b) 

𝐋3
(k+1)  =  𝒟(ℰ(𝐋3

(k); θℰ,3
(k)); θ𝒟,3

(k))            (5.12c) 

Update sparsity feature with fixed  𝐋1, 𝐋2, and 𝐋3 using proximal operator as: 

𝐒(k+1) = STρ(𝐌− 𝐋1
(k+1) − 𝐋2

(k+1) − 𝐋3
(k+1))         (5.13) 

where STρ denotes soft thresholding operator [9, 117]. 

Two types of convergence were investigated to evaluate convergence to input and 

convergence to a fixed point as [13]: 

𝑐1 = ‖𝐌− ∑ 𝐋i
(k+1)3

i=1 − 𝐒(k+1)‖
2
/‖𝐗‖2             (5.14a) 

𝑐2 =
‖(∑ 𝐋i

(k+1)3
i=1 + 𝐒(k+1)) − (∑ 𝐋i

(k)3
i=1 + 𝐒(k)‖

2

‖∑ 𝐋i
(k)3

i=1 + 𝐒(k)‖
2

                  (5.14b) 

The regularization parameters and the convergence tolerance were empirically set as 

follows: 𝜌 = 10−2, 𝜖 = 10−4.  

Finally, the MWF map was estimated as the ratio of the myelin water originated low-

dimensional component to the total low-dimensional components at 𝑇𝐸1: 
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MWF(𝑟) =
𝐋1(𝑟, 𝑇𝐸1)

∑ 𝐋i
3
i=1 (𝑟, 𝑇𝐸1)

× 100 (%)                                  (5.15) 

A summary of the iteration process is described in Table 5.1. The schematic architecture 

of NLDR-MWF is depicted in Figre 5.1. 

Table 5.1. NLDR-MWF algorithm 
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Figure 5.1. The schematic architecture of NLDR-MWF for spatio-temporal mGRE images. 

(a) Deep autoencoders trained to extract nonlinear low dimensional features at the 

bottleneck layer. (b) Sparsifying transform to the residual of input (𝐌) and low dimensional 

component (𝐋𝟏, 𝐋𝟐, and 𝐋𝟑). Note that the DAEs are trained voxel-wisely and subject-

wisely. 

 

5.2.3 Numerical Simulations 

Numerical simulations were conducted to evaluate the performance of NLLS-MWF, 
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LDR-MWF, and NLDR-MWF for various situations.  

The hollow cylinder fiber model was used to characterize the effect of fiber anisotropy 

on the evolution of the magnitude and phase signal according to the different orientation 

angle [102]. Here, the fiber orientation (FO) was set as an angle between the white matter 

fiber and the main field. The detail parameters were set the same as in [79]. 

An analytic phantom composed of varying MWF and FO was simulated. MWF was 

varied from 2% to 20% with a step size of 2% and RA was varied from 0° to 90° with a 

step size 30°.  

The complex-valued Gaussian noise was added so that the SNR at the first TE varied 

from 80 to 200 with a step size of 20. A series of Monte-Carlo simulations were performed 

with 200 repetitions. 

The estimated MWF was investigated for each ROI and the RMSE between true MWF 

map and estimated MWF map was evaluated for each SNR.  

 

5.2.4 In-vivo Experiments 

All MR imaging experiments were performed on 3 Tesla clinical scanners (Tim 

Trio/Skyra, Siemens, Erlangen, Germany). All examination was performed with approval 

from the institution's ethical review board and all subjects provided signed, informed 

consent before participation. 
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The 3D mGRE imaging parameters were FOV = 256×256×80mm3, spatial resolution = 

2×2×2 mm3, TR = 46 ms, TE1 = 1.65 ms, ΔTE = 1.04 ms, # of echoes = 30, flip-angle = 

20°, bandwidth = 1560 Hz/pixel and total scan time = 3min 55sec.  

For fiber orientation reference, DTI was acquired with TR = 7113 ms, TE = 91 ms, 

diffusion direction = 30, b-value = 600 s/mm2. For anatomical reference, T1-weighted 

sagittal 3D MPRAGE (1.0 mm isotropic) was acquired. 

Data were acquired from 6 subjects. Subjects 1-4 were healthy volunteers (age 25-29). 

Subject 5 and subject 6 were patients with mild cognitive impairment (male, age 63) and 

Alzheimer’s disease (female, age 71) confirmed by a radiologist, respectively. The ringing 

artifacts were corrupted for patients. Subject 3 and subject 4 were artifact corrupted cases 

for zipper and B0 inhomogeneity, respectively. 

The mean and STD of perpendicular and parallel ROIs were calculated for four healthy 

subjects. The ROIs were selected based on DTI. Student’s t-test was performed to evaluate 

the statistical significance of LDR-MWF against others. The significance level was set to 

0.05. Additionally, the mean and STD of six ROIs were calculated for four healthy subjects. 

The ROIs were selected based on MPRAGE.  

The component-wise analysis was conducted for each low dimensional component from 

NLDR-MWF using the mono-exponential model in Eq. 5.6a. The initial values and bounds 

were set the same as NLLS-MWF in Chapter 5.1.2. 
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5.3 Results 

5.3.1 Numerical Simulations 

The simulation results of MWF mapping for various MWF and fiber orientation are 

shown in Figure 5.2. The STD of LDR-MWF and NLDR-MWF was reduced by about 40% 

compared to NLLS-MWF. For FA with 0° and 30°, NLLS-MWF, LDR-MWF, and NLDR-

MWF showed similar results. For FA with 60° and 90°, on the other hand, LDR-MWF 

showed significant underestimation (green arrow in Figure 5.2c). The ROI analysis for 

simulation is shown in Figure 5.3. For FA with 0° and 30°, NLLS-MWF was 

underestimated about 10% and LDR/NLDR-MWF was underestimated about 15% (Figure 

5.3a and 5.3b). For FA with 60° and 90°, the linearity of estimated MWF using NLLS-

MWF and LDR-MWF deviated (Figure 5.3c and 5.3d). NLLS-MWF fluctuated when true 

MWF is 8% to 12% and LDR-MWF faded away when true MWF is less than 6%. 

The RMSE of the estimated MWF map is shown in Figure 5.4. The RMSE of NLDR-

MWF was reduced by about 40% and 20% compared to NLLS-MWF and LDR-MWF, 

respectively (Figure 5.4a). For FA with 0° and 30°, the RMSE of LDR-MWF and NLDR-

MWF was similar (Figure 5.4b and 5.4c). For FA with 60° and 90°, the RMSE of LDR-

MWF was over NLLS-MWF (Figure 5.4d and 5.4e). It supports the fiber robustness of 

NLDR-MWF 



 

102 

 

Figure 5.2. Numerical simulation of MWF mapping for various MWF and FA. (a) True 

MWF map, (b) NLLS-MWF map, (c) LDR-MWF map and (d) NLDR-MWF map. Note 

that the LDR-MWF is abnormally underestimated for low MWF with high FA. ROI 

analysis and linear regression for each FA is depicted in Figure 5.3. 

 

Figure 5.3. ROI analysis of MWF map in numerical simulation. (a) FO = 0° region, (b) FO 

= 30° region, (c) FO = 60° region, and (d) FO = 90° region. ROI analysis and linear 

regression were evaluated for each FOs corresponding to single column in Figure 5.2. 
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Figure 5.4. Noise sensitivity of MWF map in simulation. RMSE according to SNR for (a) 

entire MWF map, (b) FO = 0° region, (c) FO = 30° region, (d) FO = 60° region, and (e) FO 

= 90° region. Note that RMSE for each FA region is evaluated for single column in Figure 

5.2. 
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5.3.2 In-vivo Experiments 

The effect of fiber orientation to MWF value is shown in Figure 5.5. For perpendicular 

ROI with low MWF value under 6%, the LDR-MWF was reduced by more than 25% 

compared to NLLS-MWF and NLDR-MWF (p<0.05). For parallel ROI with a low MWF 

value under 6%, there was no significant difference. It supports the robustness of the fiber 

orientation of NLDR-MWF in simulation. The perpendicular and parallel ROIs of each 

healthy subject is depicted in Figure 5.6. 

Figure 5.5. Effect of fiber orientation to MWF map in in-vivo (subject1). (a) perpendicular 

ROI and (b) parallel ROI (yellow box) with low MWF (<6%). (c) Mean and STD of MWF 

from healthy volunteers (N=4). The significant level was set to 0.05. 
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Figure 5.6. Perpendicular ROIs and parallel ROIs (yellow box) with low MWF (<6%). (a) subject 1, (b) subject 2, (c) 

subject 3, and (d) subject 4.
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Representative MWF maps from subject 1 are shown in Figure 5.7. The boundary of 

white matter was more clearly visualized in LDR/NLDR-MWF compared to NLLS-MWF. 

For the frontal lobe region, LDR/NLDR-MWF was well corresponded to MRPAGE, while 

NLLS-MWF was corrupted. 

 

Figure 5.7. Six representative slices from healthy volunteer (subject1). (a) MPRAGE, (b) 

NLLS-MWF, (c) LDR-MWF, and (d) NLDR-MWF. 
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Artifact corrupted cases are shown in Figure 5.8. Subjects 5 and 6 showed a ringing 

artifact. Subjects 3 and 4 showed zipper and B0 inhomogeneity artifacts, respectively. In 

Figure 5.8a and 8b, ringing artifacts in NLLS-MWF are reduced in LDR-MWF and NLDR-

MWF. In Figure 5.8c and 5.8d, a zipper artifact and B0 inhomogeneity artifact in NLLS-

MWF are reduced in LDR-MWF and NLDR-MWF. The MWF maps from other slices are 

shown in Figure 5.9 - 5.11. 

Figure 5.8. Single representative slice when imaging artifacts are corrupted. (a) Ringing 

artifact 1, (b) Ringing artifact 2, (c) Zipper artifact, and (d) B0 inhomogeneity artifact were 

corrupted, respectively. Note that blue arrow indicates each artifact. Additional four 

consecutive slices are provided in Figure 5.9 - 5.11. 
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Figure 5.9. Four representative slices for ringing artifact corrupted cases. 
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Figure 5.10. Four representative slices for zipper artifact 

corrupted case. 

Figure 5.11. Four representative slices for B0 

inhomogeneity artifact corrupted case. 
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The component-wise analysis for NLLS-MWF and NLDR-MWF is shown in Figure 

5.12. The amplitude map and R2* map was more clearly visualized for NLDR-MWF than 

NLLS-MWF (Figure 5.12a and 5.12b). The histogram of amplitude using NLLS-MWF and 

NLDR-MWF was well corresponded (Figure 5.12c). The histogram of 𝑇2,𝑚𝑦
∗  using 

NLLS-MWF was biased to 10ms, while the histogram of 𝑇2,𝑎𝑥
∗  and 𝑇2,𝑒𝑥

∗  using NLDR-

MWF was biased to 60ms and 45ms, respectively (Figure 5.12d). 
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Figure 5.12. Comparison of component-wise analysis for NLLS-MWF and NLDR-MWF. (a) amplitude map and 

(b) R2* map. (c) histogram of amplitude and (d) histogram of R2*. The R2* map of myelin water component was 

masked. Note that mono-exponential curve-fitting was processed for each low dimension component of rDAE. 

Note that the noise. 
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5.4 Discussion 

In this study, I propose a nonlinear dimensionality reduction (NLDR) method to separate 

multi-component T2* sources from mGRE images. Based on the linear low dimensionality 

of mGRE source signals discerned by rPCA-MWF (referred here as LDR-MWF), I suggest 

rDAE as a nonlinear approach. 

The NLDR-MWF has several improvements compared to the LDR-MWF. First, the 

dimensionality reduction of the proposed method is expanded to a complex-valued attribute 

of the signal. As LDR-MWF implemented NMF for nuclear norm minimization, the low 

dimensionality of mGRE sources was limited to the magnitude domain. By substituting 

NMF for DAE, the low dimensional feature can be extracted from the concatenated real 

and imaginary signal. The incorporation of a complex-valued signal feature improves the 

accuracy of MWF for high fiber anisotropy with low MWF in simulation. It supports that 

LDR-MWF and others are significantly different for perpendicular ROI of in-vivo. Second, 

each low dimensional component of the proposed method well corresponds to myelin, 

axonal, and extracellular water components. As LDR-MWF implemented NNDSVD for 

initial estimation, it cannot differentiate two slowly decaying signals (i.e., axonal and 

extracellular water) which are lack of orthogonality. By replacing NNDSVD with a model-

based pre-trained network, those signals are distinguished. 

It is noteworthy that the noise and artifact robustness of LDR-MWF is maintained for 

NLDR-MWF as well. By reducing the size of hidden layers, the DAE is trained to represent 
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the hidden feature of the dataset so that each T2* source signal is represented with intrinsic 

dimensionality (i.e., the size of the bottleneck layer). Subsequent sparsifying operator for 

residual signal encourages the separation of anomaly features that does not reside in low 

dimensional subspace. Consequently, the artifact robustness of NLDR-MWF is 

accomplished similarly to LDR-MWF. 

Several modifications are worthy to investigate for future work. First, the complex-

valued neural network can be implemented to the proposed method. While the input signal 

was arranged by concatenating the real and the imaginary part of the complex-valued signal 

as in [129-131], the complex-valued neural network can improve the performance [132]. 

The activation function considering phase evolution as well as complex-valued weights can 

improve the signal deviation in the NLDR of DAE. Second, the variational autoencoder 

can be implemented to the proposed method [133]. While a simple autoencoder was 

designed by stacking the multiple layers in this study, the consideration of probabilistic 

distribution for latent feature could improve the low dimensional feature extraction. 

 

5.5 Conclusion 

In this study, I present a nonlinear dimensionality reduction method for MWF mapping. 

The low dimensionality feature is extracted using a deep autoencoder while encouraging 

the sparsity of residuals. The proposed method not only maintains the robustness for noise 

and artifacts in linear dimensionality reduction approach, but also improved the accuracy 
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of MWF map by considering the complex-valued attributes. The proposed method may be 

extended in various ways including implementation of complex-valued activation function, 

and improved network design. 
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Chapter 6 

Conclusion 

This chapter summarizes the dimensionality reduction methods for spatiotemporal MRI 

presented in this dissertation. PCA, rPCA, and rDAE have been optimized for MRSI and 

MGRE datasets, and the low dimensional temporal feature has been effectively extracted 

and investigated.  

In Chapter 3, a linear dimensionality reduction technique has been implemented to the 

reconstruction of hyperpolarized dynamic 13C MRSI. Based on the spectroscopic signal 

model, the 13C MRSI dataset possesses the spatiotemporal correlation, and it allows the 

distinction of temporal basis function and spatial coefficient. The temporal basis features 

have been extracted over dynamic frames and the consistency has been investigated. Finally, 

the single basis acquisition scheme has been proposed. 

In Chapter 4, a robust linear dimensionality reduction technique has been implemented 

to separate multi-component exponential sources from MGRE. Considering the low 

dimensional feature of sources, NMF and hankelization have been implemented to reduce 

the dimensionality. Additionally, the separation of sparse component improves the 

robustness of low dimensional component against noise and artifacts. The low dimensional 

components well corresponded to the literature source signals. 
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In Chapter 5, a nonlinear dimensionality reduction technique has been implemented to 

separate complex-valued multi-component exponential sources from MGRE. The 

proposed method not only maintains the robustness for noise and artifacts in linear 

dimensionality reduction approach, but also improved the accuracy of the MWF map by 

considering the complex-valued attributes. The proposed method may be extended in 

various ways including implementation of complex-valued activation function, and 

improved network design. 
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국문요약 

시공간분해능 자기공명영상을 위한 차원축소법 

 

자기공명영상은 다원적 영상 촬영방법으로, 이온화 및 침습적 시술 없이 인

체 내부의 다양한 대조도를 제공한다. 이러한 자기공명영상의 유연성은 다중

대비영상, 조직에서의 대사활동, 뇌의 기능활동, 전자기적 특성을 포함한 많

은 응용을 가능케 한다. 

시공간분해능 자기공명영상은 공간정보 뿐 아니라 시간정보도 제공할 수 있

다. 몇몇 시공간분해능 자기공명영상은 시간차원에서 자유유도감쇠, T2* 이

완, T1 이완 등 중복적인 특성을 가지고 있어, 이들을 저차원 부분공간을 통

해 표현할 수 있다. 저차원 부분공간을 이용하여 재구성된 데이터셋은 원래 

데이터셋보다 낮은 차원을 가지며, 이를 내재적 차원이라 일컫는다. 

본 논문에서는 고차원 자기공명영상, 특히 자기공명분광영상과 다중에코경

사에코 영상을 포함한 시공간분해능 자기공명영상을 위한 차원축소기법을 제

안한다. 선형 접근방법으로, 주성분분석을 사용하여 동적 초분극화 13C 자기

공명분광영상의 스펙트럼 기반의 일관성을 조사하였다. 추출된 스펙트럼 특성
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은 신호대비잡음비 증가와 스캔시간 단축을 가능케 하였다. 또 다른 선형 접

근방식인 강건한 주성분분석을 사용하여 다중에코경사에코 영상으로부터 수초

물분율을 영상화 하였다. 추출된 시간 특성은 다중에코경사에코 영상의 성분 

신호들의 특성과 유사하였다. 비선형 접근방법으로, 강건한 오토인코더를 사

용하여 다중에코경사에코 영상으로부터 수초물분율을 영상화 하였다. 기존 강

건한 주성분분석 방법의 잡음과 인공물에 대한 강건함이 유지되었을 뿐 아니

라, 다중에코경사에코 영상의 복소신호의 추출을 가능케 하였다. 

 

핵심어: 자기공명영상, 차원축소법, 주성분분석, 오토인코더, 기계학습 

 

 

 


